These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cells of proximal and distal tubular origin respond differently to challenges of oxalate and calcium oxalate crystals. Thamilselvan S, Hackett RL, Khan SR. J Am Soc Nephrol; 1999 Nov 15; 10 Suppl 14():S452-6. PubMed ID: 10541282 [Abstract] [Full Text] [Related]
4. Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. McMartin KE, Wallace KB. Toxicol Sci; 2005 Mar 15; 84(1):195-200. PubMed ID: 15601675 [Abstract] [Full Text] [Related]
5. Renal tubular cell membranes inhibit growth but promote aggregation of calcium oxalate monohydrate crystals. Chutipongtanate S, Thongboonkerd V. Chem Biol Interact; 2010 Dec 05; 188(3):421-6. PubMed ID: 20797392 [Abstract] [Full Text] [Related]
6. Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. Rabinovich YI, Esayanur M, Daosukho S, Byer KJ, El-Shall HE, Khan SR. J Colloid Interface Sci; 2006 Aug 01; 300(1):131-40. PubMed ID: 16677664 [Abstract] [Full Text] [Related]
7. Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. Chaiyarit S, Thongboonkerd V. J Proteome Res; 2012 Jun 01; 11(6):3269-80. PubMed ID: 22512661 [Abstract] [Full Text] [Related]
8. The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation. Guo C, McMartin KE. Toxicology; 2005 Mar 30; 208(3):347-55. PubMed ID: 15695020 [Abstract] [Full Text] [Related]
9. Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST. J Proteome Res; 2008 Nov 30; 7(11):4689-700. PubMed ID: 18850734 [Abstract] [Full Text] [Related]
10. Redistribution of intracellular calcium and its effect on apoptosis in macrophages: Induction by oxidized LDL. Deng T, Zhang L, Ge Y, Lu M, Zheng X. Biomed Pharmacother; 2009 May 30; 63(4):267-74. PubMed ID: 18602792 [Abstract] [Full Text] [Related]
13. Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Dahlem YA, Wolf G, Siemen D, Horn TF. Cell Calcium; 2006 May 05; 39(5):387-400. PubMed ID: 16513166 [Abstract] [Full Text] [Related]
14. The changes of intracellular H2O2 are an important factor maintaining mitochondria membrane potential of antimycin A-treated As4.1 juxtaglomerular cells. Han YW, Kim SZ, Kim SH, Park WH. Biochem Pharmacol; 2007 Mar 15; 73(6):863-72. PubMed ID: 17174941 [Abstract] [Full Text] [Related]
15. Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Xiong J, Camello PJ, Verkhratsky A, Toescu EC. Neurobiol Aging; 2004 Mar 15; 25(3):349-59. PubMed ID: 15123341 [Abstract] [Full Text] [Related]
16. Elucidation of the mechanism of crystal-cell interaction using fibronectin-overexpressing Madin-Darby canine kidney cells. Tsujikawa K, Tsujihata M, Tei N, Yoshimura K, Nonomura N, Okuyama A. Urol Int; 2007 Mar 15; 79(2):157-63. PubMed ID: 17851287 [Abstract] [Full Text] [Related]
17. Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions. Rabinovich YI, Daosukho S, Byer KJ, El-Shall HE, Khan SR. J Colloid Interface Sci; 2008 Sep 15; 325(2):594-601. PubMed ID: 18619606 [Abstract] [Full Text] [Related]