These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1415 related items for PubMed ID: 15918883
1. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY. Plant J; 2005 Jun; 42(5):689-707. PubMed ID: 15918883 [Abstract] [Full Text] [Related]
2. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Zhang JY, Broeckling CD, Sumner LW, Wang ZY. Plant Mol Biol; 2007 Jun; 64(3):265-78. PubMed ID: 17347795 [Abstract] [Full Text] [Related]
3. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Peel GJ, Pang Y, Modolo LV, Dixon RA. Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693 [Abstract] [Full Text] [Related]
4. Molecular cloning of a bifunctional beta-xylosidase/alpha-L-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme. Xiong JS, Balland-Vanney M, Xie ZP, Schultze M, Kondorosi A, Kondorosi E, Staehelin C. J Exp Bot; 2007 Jul; 58(11):2799-810. PubMed ID: 17615411 [Abstract] [Full Text] [Related]
6. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K. Plant Cell Physiol; 2004 Aug; 45(8):1042-52. PubMed ID: 15356330 [Abstract] [Full Text] [Related]
11. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX. Gene; 2007 Apr 15; 391(1-2):80-90. PubMed ID: 17321073 [Abstract] [Full Text] [Related]
12. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M. Plant J; 2007 Jul 15; 51(1):1-17. PubMed ID: 17488237 [Abstract] [Full Text] [Related]
13. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J. Plant Mol Biol; 2021 Jan 15; 105(1-2):193-204. PubMed ID: 33037987 [Abstract] [Full Text] [Related]
14. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis. Xu Y, Wu H, Zhao M, Wu W, Xu Y, Gu D. Int J Mol Sci; 2016 Apr 21; 17(4):. PubMed ID: 27110768 [Abstract] [Full Text] [Related]
16. NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). Luo D, Liu J, Wu Y, Zhang X, Zhou Q, Fang L, Liu Z. Plant J; 2022 Oct 21; 112(2):429-450. PubMed ID: 36006043 [Abstract] [Full Text] [Related]
17. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, Quan L, Blancaflor EB, Tang Y, Bouton JH, Udvardi M, Xia G, Wang ZY. Plant Physiol; 2011 Nov 21; 157(3):1483-96. PubMed ID: 21957014 [Abstract] [Full Text] [Related]