These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 15918884
21. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. Jain M, Li QB, Chourey PS. Physiol Plant; 2008 Sep; 134(1):161-73. PubMed ID: 18433416 [Abstract] [Full Text] [Related]
22. Mutations in genes controlling the biosynthesis and accumulation of inositol phosphates in seeds. Rasmussen SK, Ingvardsen CR, Torp AM. Biochem Soc Trans; 2010 Apr; 38(2):689-94. PubMed ID: 20298244 [Abstract] [Full Text] [Related]
24. Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE. Plant J; 2014 Nov; 80(4):642-53. PubMed ID: 25231822 [Abstract] [Full Text] [Related]
25. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K. Nat Biotechnol; 2007 Aug; 25(8):930-7. PubMed ID: 17676037 [Abstract] [Full Text] [Related]
26. Metabolite profiling of two low phytic acid (lpa) rice mutants. Frank T, Meuleye BS, Miller A, Shu QY, Engel KH. J Agric Food Chem; 2007 Dec 26; 55(26):11011-9. PubMed ID: 18052121 [Abstract] [Full Text] [Related]
27. Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R. BMC Genomics; 2016 Feb 24; 17():129. PubMed ID: 26911482 [Abstract] [Full Text] [Related]
28. Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Yuan FJ, Zhu DH, Tan YY, Dong DK, Fu XJ, Zhu SL, Li BQ, Shu QY. Theor Appl Genet; 2012 Nov 24; 125(7):1413-23. PubMed ID: 22733447 [Abstract] [Full Text] [Related]
29. The enzymes involved in the synthesis of phytic acid in Lemna gibba (studies on the biosynthesis of cyclitols, XL.(1)). Bollmann O, Strother S, Hoffmann-Ostenhof O. Mol Cell Biochem; 1980 May 07; 30(3):171-5. PubMed ID: 6250022 [Abstract] [Full Text] [Related]
30. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Hegeman CE, Good LL, Grabau EA. Plant Physiol; 2001 Apr 07; 125(4):1941-8. PubMed ID: 11299373 [Abstract] [Full Text] [Related]
31. Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Abid G, Silue S, Muhovski Y, Jacquemin JM, Toussaint A, Baudoin JP. Gene; 2009 Jun 15; 439(1-2):1-10. PubMed ID: 19306919 [Abstract] [Full Text] [Related]
32. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E. J Exp Bot; 2009 Jun 15; 60(3):967-78. PubMed ID: 19204030 [Abstract] [Full Text] [Related]
33. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consonni G, Nielsen E. Theor Appl Genet; 2003 Oct 15; 107(6):980-7. PubMed ID: 14523526 [Abstract] [Full Text] [Related]
34. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ. Plant J; 2014 Nov 15; 80(3):503-15. PubMed ID: 25155524 [Abstract] [Full Text] [Related]
35. Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds. Yu J, Saiardi A, Greenwood JS, Bewley JD. Planta; 2014 May 15; 239(5):965-77. PubMed ID: 24463774 [Abstract] [Full Text] [Related]
36. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC. Plant Cell; 2005 Nov 15; 17(11):2886-98. PubMed ID: 16243907 [Abstract] [Full Text] [Related]
37. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Agredano-Moreno LT, Reyes de la Cruz H, Martínez-Castilla LP, Sánchez de Jiménez E. Mol Biosyst; 2007 Nov 15; 3(11):794-802. PubMed ID: 17940662 [Abstract] [Full Text] [Related]
38. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. Proc Natl Acad Sci U S A; 2005 Aug 30; 102(35):12612-7. PubMed ID: 16107538 [Abstract] [Full Text] [Related]
39. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Suzuki M, Settles AM, Tseung CW, Li QB, Latshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR. Plant J; 2006 Jan 30; 45(2):264-74. PubMed ID: 16367969 [Abstract] [Full Text] [Related]
40. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX. Physiol Plant; 2009 Aug 30; 136(4):407-25. PubMed ID: 19470090 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]