These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 1591950

  • 1. Lipopolysaccharide alterations responsible for combined quinolone and beta-lactam resistance in Pseudomonas aeruginosa.
    Leying HJ, Büscher KH, Cullmann W, Then RL.
    Chemotherapy; 1992; 38(2):82-91. PubMed ID: 1591950
    [Abstract] [Full Text] [Related]

  • 2. Emergence of resistance to beta-lactam antibiotics in Pseudomonas aeruginosa during treatment with new beta-lactams.
    Lerner SA, Quinn JP.
    Chemioterapia; 1985 Feb; 4(1):95-101. PubMed ID: 3921267
    [Abstract] [Full Text] [Related]

  • 3. Beta-lactam resistant Pseudomonas aeruginosa strains emerging during therapy: synergistic resistance mechanisms.
    Pagani L, Debiaggi M, Tenni R, Cereda PM, Landini P, Romero E.
    Microbiologica; 1988 Jan; 11(1):47-53. PubMed ID: 2832709
    [Abstract] [Full Text] [Related]

  • 4. Correlation between lipopolysaccharide structure and permeability resistance in beta-lactam-resistant Pseudomonas aeruginosa.
    Godfrey AJ, Hatlelid L, Bryan LE.
    Antimicrob Agents Chemother; 1984 Aug; 26(2):181-6. PubMed ID: 6435513
    [Abstract] [Full Text] [Related]

  • 5. Penicillin-binding proteins of Pseudomonas aeruginosa. Comparison of two strains differing in their resistance to beta-lactam antibiotics.
    Curtis NA, Orr D, Boulton MG, Ross GW.
    J Antimicrob Chemother; 1981 Feb; 7(2):127-36. PubMed ID: 6783607
    [No Abstract] [Full Text] [Related]

  • 6. [Mechanism of susceptibility and resistance of bacteria to beta-lactam antibiotics].
    Tsuji A.
    Nihon Rinsho; 1991 Oct; 49(10):2254-60. PubMed ID: 1749080
    [No Abstract] [Full Text] [Related]

  • 7. State of penicillin-binding proteins and requirements for their bactericidal interaction with beta-lactam antibiotics in Serratia marcescens highly resistant to extended-spectrum beta-lactams.
    Gunkel AG, Hechler U, Martin HH.
    J Gen Microbiol; 1991 Feb; 137(2):243-52. PubMed ID: 2016583
    [Abstract] [Full Text] [Related]

  • 8. Mechanism of imipenem resistance acquired by three Pseudomonas aeruginosa strains during imipenem therapy.
    Vurma-Rapp U, Kayser FH, Hadorn K, Wiederkehr F.
    Eur J Clin Microbiol Infect Dis; 1990 Aug; 9(8):580-7. PubMed ID: 2120059
    [Abstract] [Full Text] [Related]

  • 9. Characterization of multiresistant strains of Neisseria gonorrhoeae isolated in Nicaragua.
    Castro I, Bergeron MG, Chamberland S.
    Sex Transm Dis; 1993 Aug; 20(6):314-20. PubMed ID: 8108753
    [Abstract] [Full Text] [Related]

  • 10. Multiply resistant mutants of Enterobacter cloacae selected by beta-lactam antibiotics.
    Then RL, Angehrn P.
    Antimicrob Agents Chemother; 1986 Nov; 30(5):684-8. PubMed ID: 3492174
    [Abstract] [Full Text] [Related]

  • 11. Targets of the beta-lactam antibiotics, penicillin-binding proteins, in ampicillin-resistant, non-beta-lactamase-producing Haemophilus influenzae.
    Mendelman PM.
    J Infect Dis; 1992 Jun; 165 Suppl 1():S107-9. PubMed ID: 1588136
    [No Abstract] [Full Text] [Related]

  • 12. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections.
    Quinn JP, Dudek EJ, DiVincenzo CA, Lucks DA, Lerner SA.
    J Infect Dis; 1986 Aug; 154(2):289-94. PubMed ID: 3088133
    [Abstract] [Full Text] [Related]

  • 13. Penicillin-binding proteins, porins and outer-membrane permeability of carbenicillin-resistant and -susceptible strains of Pseudomonas aeruginosa.
    Livermore DM.
    J Med Microbiol; 1984 Oct; 18(2):261-70. PubMed ID: 6092639
    [Abstract] [Full Text] [Related]

  • 14. Impaired imipenem uptake associated with alterations in outer membrane proteins and lipopolysaccharides in imipenem-resistant Shigella dysenteriae.
    Ghosh AS, Kar AK, Kundu M.
    J Antimicrob Chemother; 1999 Feb; 43(2):195-201. PubMed ID: 11252324
    [Abstract] [Full Text] [Related]

  • 15. Role of beta-lactamase in in vivo development of ceftazidime resistance in experimental Pseudomonas aeruginosa endocarditis.
    Bayer AS, Peters J, Parr TR, Chan L, Hancock RE.
    Antimicrob Agents Chemother; 1987 Feb; 31(2):253-8. PubMed ID: 3105450
    [Abstract] [Full Text] [Related]

  • 16. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa.
    Srikumar R, Tsang E, Poole K.
    J Antimicrob Chemother; 1999 Oct; 44(4):537-40. PubMed ID: 10588316
    [Abstract] [Full Text] [Related]

  • 17. Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus.
    Obara M, Nakae T.
    J Antimicrob Chemother; 1991 Dec; 28(6):791-800. PubMed ID: 1816177
    [Abstract] [Full Text] [Related]

  • 18. Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa.
    Reguera JA, Baquero F, Berenguer J, Martinez-Ferrer M, Martinez JL.
    Antimicrob Agents Chemother; 1990 Nov; 34(11):2093-6. PubMed ID: 2127343
    [Abstract] [Full Text] [Related]

  • 19. Role of permeability barriers in resistance to beta-lactam antibiotics.
    Nikaido H.
    Pharmacol Ther; 1985 Nov; 27(2):197-231. PubMed ID: 2412244
    [No Abstract] [Full Text] [Related]

  • 20. Molecular basis of the non-beta-lactamase-mediated resistance to beta-lactam antibiotics in strains of Haemophilus influenzae isolated in Canada.
    Clairoux N, Picard M, Brochu A, Rousseau N, Gourde P, Beauchamp D, Parr TR, Bergeron MG, Malouin F.
    Antimicrob Agents Chemother; 1992 Jul; 36(7):1504-13. PubMed ID: 1510447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.