These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 1592162
41. An application for impedance spectroscopy in the characterisation of the glass transition during the lyophilization cycle: the example of a 10% w/v maltodextrin solution. Smith G, Arshad MS, Polygalov E, Ermolina I. Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1130-40. PubMed ID: 23959072 [Abstract] [Full Text] [Related]
42. Optimizing lyophilization primary drying: A vaccine case study with experimental and modeling techniques. Najarian J, Metsi-Guckel E, Renawala HK, Grosse D, Sims A, Walter A, Sarkar A, Karande A. Int J Pharm; 2024 Jun 25; 659():124168. PubMed ID: 38663644 [Abstract] [Full Text] [Related]
43. Investigations into the stabilization of drugs by sugar glasses: III. The influence of various high-pH buffers. Eriksson JH, Hinrichs WL, de Jong GJ, Somsen GW, Frijlink HW. Pharm Res; 2003 Sep 25; 20(9):1437-43. PubMed ID: 14567639 [Abstract] [Full Text] [Related]
44. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents. Wittaya-Areekul S, Nail SL. J Pharm Sci; 1998 Apr 25; 87(4):491-5. PubMed ID: 9548903 [Abstract] [Full Text] [Related]
45. An investigation into the subambient behavior of aqueous mannitol solutions using differential scanning calorimetry, cold stage microscopy, and X-ray diffractometry. Kett VL, Fitzpatrick S, Cooper B, Craig DQ. J Pharm Sci; 2003 Sep 25; 92(9):1919-29. PubMed ID: 12950009 [Abstract] [Full Text] [Related]
46. Citrate increases glass transition temperature of vitrified sucrose preparations. Kets EP, IJpelaar PJ, Hoekstra FA, Vromans H. Cryobiology; 2004 Feb 25; 48(1):46-54. PubMed ID: 14969681 [Abstract] [Full Text] [Related]
47. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids. Harnkarnsujarit N, Charoenrein S, Roos YH. J Food Sci; 2012 Nov 25; 77(11):E313-20. PubMed ID: 23094980 [Abstract] [Full Text] [Related]
48. Thermal analysis of freeze-dried liposome-carbohydrate mixtures with modulated temperature differential scanning calorimetry. van Winden EC, Talsma H, Crommelin DJ. J Pharm Sci; 1998 Feb 25; 87(2):231-7. PubMed ID: 9519159 [Abstract] [Full Text] [Related]
49. Method development and analysis of the water content of the maximally freeze concentrated solution suitable for protein lyophilisation. Seifert I, Bregolin A, Fissore D, Friess W. Eur J Pharm Biopharm; 2020 Aug 25; 153():36-42. PubMed ID: 32526356 [Abstract] [Full Text] [Related]
50. Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone. Pikal MJ, Dellerman K, Roy ML. Dev Biol Stand; 1992 Aug 25; 74():21-37; discussion 37-8. PubMed ID: 1592171 [Abstract] [Full Text] [Related]
51. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals. Bjelošević M, Seljak KB, Trstenjak U, Logar M, Brus B, Ahlin Grabnar P. Eur J Pharm Sci; 2018 Sep 15; 122():292-302. PubMed ID: 30006178 [Abstract] [Full Text] [Related]
52. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis. Sun WQ, Davidson P, Chan HS. Biochim Biophys Acta; 1998 Sep 16; 1425(1):245-54. PubMed ID: 9813351 [Abstract] [Full Text] [Related]
54. Freeze-drying: in situ observations using cryoenvironmental scanning electron microscopy and differential scanning calorimetry. Meredith P, Donald AM, Payne RS. J Pharm Sci; 1996 Jun 16; 85(6):631-7. PubMed ID: 8773961 [Abstract] [Full Text] [Related]
55. Solid state chemistry of proteins: I. glass transition behavior in freeze dried disaccharide formulations of human growth hormone (hGH). Pikal MJ, Rigsbee DR, Roy ML. J Pharm Sci; 2007 Oct 16; 96(10):2765-76. PubMed ID: 17621677 [Abstract] [Full Text] [Related]
56. Effects of formulation and process factors on the crystal structure of freeze-dried Myo-inositol. Izutsu K, Yomota C, Okuda H, Kawanishi T, Yamaki T, Ohdate R, Yu Z, Yonemochi E, Terada K. J Pharm Sci; 2014 Aug 16; 103(8):2347-55. PubMed ID: 24916801 [Abstract] [Full Text] [Related]
57. Characterization of carbohydrate-protein matrices for nutrient delivery. Zhou Y, Roos YH. J Food Sci; 2011 May 16; 76(4):E368-76. PubMed ID: 22417357 [Abstract] [Full Text] [Related]
58. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality. Korang-Yeboah M, Srinivasan C, Siddiqui A, Awotwe-Otoo D, Cruz CN, Muhammad A. AAPS PharmSciTech; 2018 Jan 16; 19(1):448-459. PubMed ID: 28785859 [Abstract] [Full Text] [Related]
59. Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development. Ma X, Wang DQ, Bouffard R, MacKenzie A. Pharm Res; 2001 Feb 16; 18(2):196-202. PubMed ID: 11405291 [Abstract] [Full Text] [Related]
60. Solute crystallization in mannitol-glycine systems--implications on protein stabilization in freeze-dried formulations. Pyne A, Chatterjee K, Suryanarayanan R. J Pharm Sci; 2003 Nov 16; 92(11):2272-83. PubMed ID: 14603512 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]