These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 1592186
41. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. J Mol Biol; 2002 Jun 21; 319(5):1097-113. PubMed ID: 12079350 [Abstract] [Full Text] [Related]
42. Atomic and residue hydrophilicity in the context of folded protein structures. Kuhn LA, Swanson CA, Pique ME, Tainer JA, Getzoff ED. Proteins; 1995 Dec 21; 23(4):536-47. PubMed ID: 8749849 [Abstract] [Full Text] [Related]
43. Free energy, entropy, and enthalpy of a water molecule in various protein environments. Yu H, Rick SW. J Phys Chem B; 2010 Sep 09; 114(35):11552-60. PubMed ID: 20704188 [Abstract] [Full Text] [Related]
44. Two crystal structures of a potently sweet protein. Natural monellin at 2.75 A resolution and single-chain monellin at 1.7 A resolution. Somoza JR, Jiang F, Tong L, Kang CH, Cho JM, Kim SH. J Mol Biol; 1993 Nov 20; 234(2):390-404. PubMed ID: 8230222 [Abstract] [Full Text] [Related]
45. Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations. Olivella M, Deupi X, Govaerts C, Pardo L. Biophys J; 2002 Jun 20; 82(6):3207-13. PubMed ID: 12023245 [Abstract] [Full Text] [Related]
46. Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy. Cai M, Huang Y, Prakash O, Wen L, Dunkelbarger SP, Huang JK, Liu J, Krishnamoorthi R. Biochemistry; 1996 Apr 16; 35(15):4784-94. PubMed ID: 8664268 [Abstract] [Full Text] [Related]
47. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. Teeter MM. Proc Natl Acad Sci U S A; 1984 Oct 16; 81(19):6014-8. PubMed ID: 16593516 [Abstract] [Full Text] [Related]
48. Prediction of hydration structures around hydrophilic surfaces of proteins by using the empirical hydration distribution functions from a database analysis. Matsuoka D, Nakasako M. J Phys Chem B; 2010 Apr 08; 114(13):4652-63. PubMed ID: 20201497 [Abstract] [Full Text] [Related]
49. Hydrogen bond strength and network structure effects on hydration of non-polar molecules. Lynden-Bell RM, Giovambattista N, Debenedetti PG, Head-Gordon T, Rossky PJ. Phys Chem Chem Phys; 2011 Feb 21; 13(7):2748-57. PubMed ID: 21152590 [Abstract] [Full Text] [Related]
50. Temperature effects on the hydrophobic interaction of parallel plates in the framework of the probabilistic approach to hydrogen bonding. Djikaev YS, Ruckenstein E. J Colloid Interface Sci; 2010 Mar 15; 343(2):510-21. PubMed ID: 20042194 [Abstract] [Full Text] [Related]
51. Communication: On the locality of hydrogen bond networks at hydrophobic interfaces. Lambeth BP, Junghans C, Kremer K, Clementi C, Delle Site L. J Chem Phys; 2010 Dec 14; 133(22):221101. PubMed ID: 21171675 [Abstract] [Full Text] [Related]
52. Hydrogen-bond structure at the interfaces between water/poly(methyl methacrylate), water/poly(methacrylic acid), and water/poly(2-aminoethylmethacrylamide). Lee WJ, Chang JG, Ju SP. Langmuir; 2010 Aug 03; 26(15):12640-7. PubMed ID: 20586439 [Abstract] [Full Text] [Related]
53. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface. Ahn HC, Juranić N, Macura S, Markley JL. J Am Chem Soc; 2006 Apr 05; 128(13):4398-404. PubMed ID: 16569017 [Abstract] [Full Text] [Related]
54. Orientational ordering and dynamics of the hydrate and exchangeable hydrogen atoms in crystalline crambin. Usha MG, Wittebort RJ. J Mol Biol; 1989 Aug 20; 208(4):669-78. PubMed ID: 2810359 [Abstract] [Full Text] [Related]
55. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DM, Hubbard RE, Isaacs NW, Reynolds CD. Philos Trans R Soc Lond B Biol Sci; 1988 Jul 06; 319(1195):369-456. PubMed ID: 2905485 [Abstract] [Full Text] [Related]
56. Water-protein interactions from high-resolution protein crystallography. Nakasako M. Philos Trans R Soc Lond B Biol Sci; 2004 Aug 29; 359(1448):1191-204; discussion 1204-6. PubMed ID: 15306376 [Abstract] [Full Text] [Related]
57. Modelling of solvent positions around polar groups in proteins. Pitt WR, Goodfellow JM. Protein Eng; 1991 Jun 29; 4(5):531-7. PubMed ID: 1891460 [Abstract] [Full Text] [Related]
58. Crystal structure of Ser-22/Ile-25 form crambin confirms solvent, side chain substate correlations. Yamano A, Heo NH, Teeter MM. J Biol Chem; 1997 Apr 11; 272(15):9597-600. PubMed ID: 9092482 [Abstract] [Full Text] [Related]
59. Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature. Chen JCH, Gilski M, Chang C, Borek D, Rosenbaum G, Lavens A, Otwinowski Z, Kubicki M, Dauter Z, Jaskolski M, Joachimiak A. IUCrJ; 2024 Sep 01; 11(Pt 5):649-663. PubMed ID: 39190507 [Abstract] [Full Text] [Related]
60. Water structure in vitamin B12 coenzyme crystals. I. Analysis of the neutron and x-ray solvent densities. Savage H. Biophys J; 1986 Nov 01; 50(5):947-65. PubMed ID: 3790696 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]