These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


75 related items for PubMed ID: 15923680

  • 1. Surface-functionalized nanoparticles for controlled drug delivery.
    Choi SW, Kim WS, Kim JH.
    Methods Mol Biol; 2005; 303():121-31. PubMed ID: 15923680
    [Abstract] [Full Text] [Related]

  • 2. Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone.
    Choi SW, Kim JH.
    J Control Release; 2007 Sep 11; 122(1):24-30. PubMed ID: 17628158
    [Abstract] [Full Text] [Related]

  • 3. Furan-functionalized co-polymers for targeted drug delivery: characterization, self-assembly and drug encapsulation.
    Shi M, Shoichet MS.
    J Biomater Sci Polym Ed; 2008 Sep 11; 19(9):1143-57. PubMed ID: 18727857
    [Abstract] [Full Text] [Related]

  • 4. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems.
    Rodríguez-Cruz IM, Domínguez-Delgado CL, Escobar-Chávez JJ, Leyva-Gómez G, Ganem-Quintanar A, Quintanar-Guerrero D.
    Int J Pharm; 2009 Apr 17; 371(1-2):177-81. PubMed ID: 19150491
    [Abstract] [Full Text] [Related]

  • 5. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery.
    Kim DH, Martin DC.
    Biomaterials; 2006 May 17; 27(15):3031-7. PubMed ID: 16443270
    [Abstract] [Full Text] [Related]

  • 6. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors.
    Lu J, Shi M, Shoichet MS.
    Bioconjug Chem; 2009 Jan 17; 20(1):87-94. PubMed ID: 19099361
    [Abstract] [Full Text] [Related]

  • 7. A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles.
    Chane-Ching JY, Cobo F, Aubert D, Harvey HG, Airiau M, Corma A.
    Chemistry; 2005 Jan 21; 11(3):979-87. PubMed ID: 15612054
    [Abstract] [Full Text] [Related]

  • 8. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging.
    Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, Tramposch KM, Maitra A, Prasad PN.
    ACS Nano; 2008 Mar 21; 2(3):449-56. PubMed ID: 19206569
    [Abstract] [Full Text] [Related]

  • 9. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-beta-cyclodextrin and its properties as the new carrier of protein delivery system.
    Gao H, Wang YN, Fan YG, Ma JB.
    J Control Release; 2005 Sep 20; 107(1):158-73. PubMed ID: 16095747
    [Abstract] [Full Text] [Related]

  • 10. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier.
    Akagi T, Kaneko T, Kida T, Akashi M.
    J Control Release; 2005 Nov 28; 108(2-3):226-36. PubMed ID: 16125267
    [Abstract] [Full Text] [Related]

  • 11. Nanoparticulate drug carriers based on hybrid poly(D,L-lactide-co-glycolide)-dendron structures.
    Costantino L, Gandolfi F, Bossy-Nobs L, Tosi G, Gurny R, Rivasi F, Vandelli MA, Forni F.
    Biomaterials; 2006 Sep 28; 27(26):4635-45. PubMed ID: 16716395
    [Abstract] [Full Text] [Related]

  • 12. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.
    Owens DE, Peppas NA.
    Int J Pharm; 2006 Jan 03; 307(1):93-102. PubMed ID: 16303268
    [Abstract] [Full Text] [Related]

  • 13. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation.
    Yang A, Yang L, Liu W, Li Z, Xu H, Yang X.
    Int J Pharm; 2007 Feb 22; 331(1):123-32. PubMed ID: 17097246
    [Abstract] [Full Text] [Related]

  • 14. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers.
    Chen C, Yu CH, Cheng YC, Yu PH, Cheung MK.
    Biomaterials; 2006 Sep 22; 27(27):4804-14. PubMed ID: 16740306
    [Abstract] [Full Text] [Related]

  • 15. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers.
    Yang Y, Hua C, Dong CM.
    Biomacromolecules; 2009 Aug 10; 10(8):2310-8. PubMed ID: 19618927
    [Abstract] [Full Text] [Related]

  • 16. Core/Shell nanoparticles with lecithin lipid cores for protein delivery.
    Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH.
    Biomacromolecules; 2006 Aug 10; 7(8):2362-7. PubMed ID: 16903683
    [Abstract] [Full Text] [Related]

  • 17. Copolymeric nanofilm platform for controlled and localized therapeutic delivery.
    Chow EK, Pierstorff E, Cheng G, Ho D.
    ACS Nano; 2008 Jan 10; 2(1):33-40. PubMed ID: 19206545
    [Abstract] [Full Text] [Related]

  • 18. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S, Poulin S, Hildgen P.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):885-95. PubMed ID: 18228249
    [Abstract] [Full Text] [Related]

  • 19. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.
    Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh YK, Kwon IC, Kim K, Jeong SY.
    J Control Release; 2009 May 05; 135(3):259-67. PubMed ID: 19331853
    [Abstract] [Full Text] [Related]

  • 20. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S, Kumar N, Domb AJ.
    Macromol Biosci; 2006 Dec 08; 6(12):1019-25. PubMed ID: 17128420
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.