These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of erythrocyte deformability during capillary wetting. Zhou R, Gordon J, Palmer AF, Chang HC. Biotechnol Bioeng; 2006 Feb 05; 93(2):201-11. PubMed ID: 16302256 [Abstract] [Full Text] [Related]
3. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA. IEEE Trans Biomed Eng; 2003 Jan 05; 50(1):97-106. PubMed ID: 12617529 [Abstract] [Full Text] [Related]
4. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T. J Biomech; 2008 Jul 19; 41(10):2188-96. PubMed ID: 18589429 [Abstract] [Full Text] [Related]
5. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary. Ye T, Li H, Lam KY. Microvasc Res; 2010 Dec 19; 80(3):453-63. PubMed ID: 20643152 [Abstract] [Full Text] [Related]
7. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Tomaiuolo G, Preziosi V, Simeone M, Guido S, Ciancia R, Martinelli V, Rinaldi C, Rotoli B. Ann Ist Super Sanita; 2007 Dec 19; 43(2):186-92. PubMed ID: 17634668 [Abstract] [Full Text] [Related]
8. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Mchedlishvili G. Clin Hemorheol Microcirc; 1998 Dec 19; 19(4):315-25. PubMed ID: 9972669 [Abstract] [Full Text] [Related]
9. Capillary blood viscosity in microcirculation. Cortinovis A, Crippa A, Cavalli R, Corti M, Cattaneo L. Clin Hemorheol Microcirc; 2006 Dec 19; 35(1-2):183-92. PubMed ID: 16899925 [Abstract] [Full Text] [Related]
11. Measurement of RBC deformation and velocity in capillaries in vivo. Jeong JH, Sugii Y, Minamiyama M, Okamoto K. Microvasc Res; 2006 May 19; 71(3):212-7. PubMed ID: 16624342 [Abstract] [Full Text] [Related]
15. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions. Lerche D, Frömer D. Biorheology; 2001 May 19; 38(2-3):249-62. PubMed ID: 11381179 [Abstract] [Full Text] [Related]
19. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction. Ismailov RM. Theor Biol Med Model; 2005 Mar 30; 2():13. PubMed ID: 15799779 [Abstract] [Full Text] [Related]
20. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution. Pribush A, Meyerstein D, Meiselman HJ, Meyerstein N. Biorheology; 2004 Mar 30; 41(1):29-43. PubMed ID: 14967888 [Abstract] [Full Text] [Related] Page: [Next] [New Search]