These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 15927893
1. Susceptibility of the interchain peptide of a bromelain inhibitor precursor to the target proteases bromelain, chymotrypsin, and trypsin. Sawano Y, Hatano K, Tanokura M. Biol Chem; 2005 May; 386(5):491-8. PubMed ID: 15927893 [Abstract] [Full Text] [Related]
2. Bromein, a Bromelain Inhibitor from Pineapple Stem: Structural and Functional Characteristics. Hatano KI, Takahashi K, Tanokura M. Protein Pept Lett; 2018 May; 25(9):838-852. PubMed ID: 30129400 [Abstract] [Full Text] [Related]
3. Absolute side-chain structure at position 13 is required for the inhibitory activity of bromein. Sawano Y, Hatano K, Miyakawa T, Tanokura M. J Biol Chem; 2008 Dec 26; 283(52):36338-43. PubMed ID: 18948264 [Abstract] [Full Text] [Related]
4. Structure-function relationship of bromelain isoinhibitors from pineapple stem. Hatano K, Sawano Y, Tanokura M. Biol Chem; 2002 Dec 26; 383(7-8):1151-6. PubMed ID: 12437100 [Abstract] [Full Text] [Related]
7. Characterization of the acidic and basic limbs of a bell-shaped pH profile in the inhibitory activity of bromelain inhibitor VI. Hatano K, Sawano Y, Miyakawa T, Tanokura M. Biopolymers; 2006 Mar 26; 81(4):309-19. PubMed ID: 16315142 [Abstract] [Full Text] [Related]
8. Characterization of the protease processing sites in a multidomain proteinase inhibitor precursor from Nicotiana alata. Heath RL, Barton PA, Simpson RJ, Reid GE, Lim G, Anderson MA. Eur J Biochem; 1995 May 15; 230(1):250-7. PubMed ID: 7601108 [Abstract] [Full Text] [Related]
9. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS. Biochimie; 2006 Jun 15; 88(6):673-81. PubMed ID: 16469426 [Abstract] [Full Text] [Related]
10. The role of the protein core in the inhibitory power of the classic serine protease inhibitor, chymotrypsin inhibitor 2. Radisky ES, King DS, Kwan G, Koshland DE. Biochemistry; 2003 Jun 03; 42(21):6484-92. PubMed ID: 12767231 [Abstract] [Full Text] [Related]
11. Discovery, structural determination, and putative processing of the precursor protein that produces the cyclic trypsin inhibitor sunflower trypsin inhibitor 1. Mulvenna JP, Foley FM, Craik DJ. J Biol Chem; 2005 Sep 16; 280(37):32245-53. PubMed ID: 16036912 [Abstract] [Full Text] [Related]
12. A Kunitz proteinase inhibitor from Archidendron ellipticum seeds: purification, characterization, and kinetic properties. Bhattacharyya A, Mazumdar S, Leighton SM, Babu CR. Phytochemistry; 2006 Feb 16; 67(3):232-41. PubMed ID: 16376957 [Abstract] [Full Text] [Related]
13. Modeling the 3D structure of wheat subtilisin/chymotrypsin inhibitor (WSCI). Probing the reactive site with two susceptible proteinases by time-course analysis and molecular dynamics simulations. Facchiano AM, Costantini S, Di Maro A, Panichi D, Chambery A, Parente A, Di Gennaro S, Poerio E. Biol Chem; 2006 Jul 16; 387(7):931-40. PubMed ID: 16913843 [Abstract] [Full Text] [Related]
14. Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry. Jaskolla TW, Papasotiriou DG, Karas M. J Proteome Res; 2009 Jul 16; 8(7):3588-97. PubMed ID: 19435303 [Abstract] [Full Text] [Related]
15. Nuclear magnetic resonance studies on the pKa values and interaction of ionizable groups in bromelain inhibitor VI from pineapple stem. Hatano K, Kojima M, Tanokura M, Takahashi K. Biol Chem; 2003 Jan 16; 384(1):93-104. PubMed ID: 12674503 [Abstract] [Full Text] [Related]
16. Proteinase activity and stability of natural bromelain preparations. Hale LP, Greer PK, Trinh CT, James CL. Int Immunopharmacol; 2005 Apr 16; 5(4):783-93. PubMed ID: 15710346 [Abstract] [Full Text] [Related]
17. A simple method to determine trypsin and chymotrypsin inhibitory activity. Yakoby N, Raskin I. J Biochem Biophys Methods; 2004 Jun 30; 59(3):241-51. PubMed ID: 15165755 [Abstract] [Full Text] [Related]
18. Design of serine proteinase inhibitors by combinatorial chemistry using trypsin inhibitor SFTI-1 as a starting structure. Zabłotna E, Jaśkiewicz A, Łegowska A, Miecznikowska H, Lesner A, Rolka K. J Pept Sci; 2007 Nov 30; 13(11):749-55. PubMed ID: 17828796 [Abstract] [Full Text] [Related]
19. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion. Kalli A, Håkansson K. J Proteome Res; 2008 Jul 30; 7(7):2834-44. PubMed ID: 18549259 [Abstract] [Full Text] [Related]
20. Inhibitory selectivity of canecystatin: a recombinant cysteine peptidase inhibitor from sugarcane. Oliva ML, Carmona AK, Andrade SS, Cotrin SS, Soares-Costa A, Henrique-Silva F. Biochem Biophys Res Commun; 2004 Aug 06; 320(4):1082-6. PubMed ID: 15249200 [Abstract] [Full Text] [Related] Page: [Next] [New Search]