These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 15929552
1. Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted into injured rat brain. Jendelová P, Herynek V, Urdziková L, Glogarová K, Rahmatová S, Fales I, Andersson B, Procházka P, Zamecník J, Eckschlager T, Kobylka P, Hájek M, Syková E. Cell Transplant; 2005; 14(4):173-82. PubMed ID: 15929552 [Abstract] [Full Text] [Related]
2. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Syková E, Jendelová P. Ann N Y Acad Sci; 2005 May; 1049():146-60. PubMed ID: 15965114 [Abstract] [Full Text] [Related]
3. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. J Neurosci Res; 2004 Apr 15; 76(2):232-43. PubMed ID: 15048921 [Abstract] [Full Text] [Related]
4. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Syková E, Jendelová P. Neurodegener Dis; 2006 Apr 15; 3(1-2):62-7. PubMed ID: 16909039 [Abstract] [Full Text] [Related]
5. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site. Callera F, de Melo CM. Stem Cells Dev; 2007 Jun 15; 16(3):461-6. PubMed ID: 17610376 [Abstract] [Full Text] [Related]
6. In vivo tracking of stem cells in brain and spinal cord injury. Sykova E, Jendelova P. Prog Brain Res; 2007 Jun 15; 161():367-83. PubMed ID: 17618991 [Abstract] [Full Text] [Related]
7. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Weber A, Pedrosa I, Kawamoto A, Himes N, Munasinghe J, Asahara T, Rofsky NM, Losordo DW. Eur J Cardiothorac Surg; 2004 Jul 15; 26(1):137-43. PubMed ID: 15200992 [Abstract] [Full Text] [Related]
8. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, Syková E. Magn Reson Med; 2003 Oct 15; 50(4):767-76. PubMed ID: 14523963 [Abstract] [Full Text] [Related]
9. Isolation of purified autologous peripheral blood CD34+ cells with low T cell content using CliniMACS device--a local experience. Leong CF, Habsah A, Teh HS, Goh KY, Fadilah SA, Cheong SK. Malays J Pathol; 2008 Jun 15; 30(1):31-6. PubMed ID: 19108409 [Abstract] [Full Text] [Related]
10. [In vivo tracking of bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide after cerebral ischemia in rats by magnetic resonance imaging]. Wei JJ, Wang RZ, Lu JJ, Wang Y, Fan XT, Feng F, Ma WB, Yang Y, Li GL, Dou WC, Jin ZY, Kong YG. Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Feb 15; 29(1):73-7. PubMed ID: 17380672 [Abstract] [Full Text] [Related]
11. [Magnetic resonance imaging of magnetically labeled endothelial progenitor cells homing to the injured endothelium]. Ma ZL, Teng GJ, Mai XL, Ju SH, Deng G, Sun JH, Zhang HY, Yu H, Li GZ. Zhonghua Yi Xue Za Zhi; 2007 Mar 13; 87(10):679-84. PubMed ID: 17553305 [Abstract] [Full Text] [Related]
13. In vivo MR imaging of magnetically labeled human embryonic stem cells. Tallheden T, Nannmark U, Lorentzon M, Rakotonirainy O, Soussi B, Waagstein F, Jeppsson A, Sjögren-Jansson E, Lindahl A, Omerovic E. Life Sci; 2006 Aug 01; 79(10):999-1006. PubMed ID: 16828117 [Abstract] [Full Text] [Related]
14. [In vivo MR imaging tracking of supermagnetic iron-oxide nanoparticle-labeled bone marrow mesenchymal stem cells injected into intra-articular space of knee joints: experiment with rabbit]. Jin XH, Yang L, Duan XJ, Xie B, Li Z, Tan HB. Zhonghua Yi Xue Za Zhi; 2007 Dec 04; 87(45):3213-8. PubMed ID: 18399117 [Abstract] [Full Text] [Related]
15. Identification of CD34+ subsets after glycoprotease selection: engraftment of CD34+Thy-1+Lin- stem cells in fetal sheep. Sutherland DR, Yeo EL, Stewart AK, Nayar R, DiGiusto R, Zanjani E, Hoffman R, Murray LJ. Exp Hematol; 1996 Jun 04; 24(7):795-806. PubMed ID: 8647230 [Abstract] [Full Text] [Related]
16. CD34(+) hematopoietic progenitor cell selection of bone marrow grafts for autologous transplantation in pediatric patients. Kasow KA, Sims-Poston L, Eldridge P, Hale GA. Biol Blood Marrow Transplant; 2007 May 04; 13(5):608-14. PubMed ID: 17448921 [Abstract] [Full Text] [Related]
17. Magnetic-Based Cell Isolation Technique for the Selection of Stem Cells. Korkusuz P, Köse S, Yersal N, Önen S. Methods Mol Biol; 2019 May 04; 1879():153-163. PubMed ID: 30306535 [Abstract] [Full Text] [Related]
18. CD34+ cell enrichment for autologous peripheral blood stem cell transplantation by use of the CliniMACs device. Després D, Flohr T, Uppenkamp M, Baldus M, Hoffmann M, Huber C, Derigs HG. J Hematother Stem Cell Res; 2000 Aug 04; 9(4):557-64. PubMed ID: 10982256 [Abstract] [Full Text] [Related]
19. Rapid and effective CD3 T-cell depletion with a magnetic cell sorting program to produce peripheral blood progenitor cell products for haploidentical transplantation in children and adults. Dykes JH, Toporski J, Juliusson G, Békássy AN, Lenhoff S, Lindmark A, Scheding S. Transfusion; 2007 Nov 04; 47(11):2134-42. PubMed ID: 17958543 [Abstract] [Full Text] [Related]
20. Experimental study of cell migration and functional differentiation of transplanted neural stem cells co-labeled with superparamagnetic iron oxide and BrdU in an ischemic rat model. Zhu WZ, Li X, Qi JP, Tang ZP, Wang W, Wei L, Lei H. Biomed Environ Sci; 2008 Oct 04; 21(5):420-4. PubMed ID: 19133616 [Abstract] [Full Text] [Related] Page: [Next] [New Search]