These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 15929938
1. Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Huber DP, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J. Tree Physiol; 2005 Aug; 25(8):1075-83. PubMed ID: 15929938 [Abstract] [Full Text] [Related]
2. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Huber DP, Philippe RN, Godard KA, Sturrock RN, Bohlmann J. Phytochemistry; 2005 Jun; 66(12):1427-39. PubMed ID: 15921711 [Abstract] [Full Text] [Related]
3. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Miller B, Madilao LL, Ralph S, Bohlmann J. Plant Physiol; 2005 Jan; 137(1):369-82. PubMed ID: 15618433 [Abstract] [Full Text] [Related]
4. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Hudgins JW, Christiansen E, Franceschi VR. Tree Physiol; 2003 Apr; 23(6):361-71. PubMed ID: 12642238 [Abstract] [Full Text] [Related]
5. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Martin DM, Gershenzon J, Bohlmann J. Plant Physiol; 2003 Jul; 132(3):1586-99. PubMed ID: 12857838 [Abstract] [Full Text] [Related]
6. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Rossato L, MacDuff JH, Laine P, Le Deunff E, Ourry A. J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924 [Abstract] [Full Text] [Related]
7. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W, Huang W, Ning S, Gong X, Ye Q, Wei D. PLoS One; 2019 May; 14(3):e0212863. PubMed ID: 30865659 [Abstract] [Full Text] [Related]
8. Comparative Metabolomic and Proteomic Analyses Reveal the Regulation Mechanism Underlying MeJA-Induced Bioactive Compound Accumulation in Cutleaf Groundcherry ( Physalis angulata L.) Hairy Roots. Zhan X, Liao X, Luo X, Zhu Y, Feng S, Yu C, Lu J, Shen C, Wang H. J Agric Food Chem; 2018 Jun 27; 66(25):6336-6347. PubMed ID: 29874907 [Abstract] [Full Text] [Related]
9. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Liu H, Wu W, Hou K, Chen J, Zhao Z. Mol Genet Genomics; 2016 Feb 27; 291(1):337-48. PubMed ID: 26342927 [Abstract] [Full Text] [Related]
11. Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. Capra E, Colombi C, De Poli P, Nocito FF, Cocucci M, Vecchietti A, Marocco A, Stile MR, Rossini L. J Plant Physiol; 2015 Mar 01; 175():68-77. PubMed ID: 25506768 [Abstract] [Full Text] [Related]
20. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender (Lavandula angustifolia). Dong Y, Li J, Zhang W, Bai H, Li H, Shi L. Plant Physiol Biochem; 2022 Aug 15; 185():25-34. PubMed ID: 35649290 [Abstract] [Full Text] [Related] Page: [Next] [New Search]