These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
258 related items for PubMed ID: 15932242
1. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Lei Y, Mulchandani A, Chen W. Biotechnol Prog; 2005; 21(3):678-81. PubMed ID: 15932242 [Abstract] [Full Text] [Related]
2. Anchorage of GFP fusion on the cell surface of Pseudomonas putida. Yuan Y, Yang C, Song C, Jiang H, Mulchandani A, Qiao C. Biodegradation; 2011 Feb; 22(1):51-61. PubMed ID: 20556484 [Abstract] [Full Text] [Related]
3. Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. Lei Y, Mulchandani P, Chen W, Mulchandani A. J Agric Food Chem; 2005 Feb 09; 53(3):524-7. PubMed ID: 15686397 [Abstract] [Full Text] [Related]
4. Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, Mulchandani A, Chen W. Biotechnol Bioeng; 2008 Jan 01; 99(1):30-7. PubMed ID: 17573690 [Abstract] [Full Text] [Related]
5. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. Yang C, Song C, Mulchandani A, Qiao C. J Agric Food Chem; 2010 Jun 09; 58(11):6762-6. PubMed ID: 20455565 [Abstract] [Full Text] [Related]
6. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Shimazu M, Nguyen A, Mulchandani A, Chen W. Biotechnol Prog; 2003 Jun 09; 19(5):1612-4. PubMed ID: 14524726 [Abstract] [Full Text] [Related]
7. Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. Liu Z, Yang C, Jiang H, Mulchandani A, Chen W, Qiao C. J Agric Food Chem; 2009 Jul 22; 57(14):6171-7. PubMed ID: 19548671 [Abstract] [Full Text] [Related]
8. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Shimazu M, Mulchandani A, Chen W. Biotechnol Bioeng; 2001 Dec 22; 76(4):318-24. PubMed ID: 11745159 [Abstract] [Full Text] [Related]
9. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Tang X, Liang B, Yi T, Manco G, Palchetti I, Liu A. Enzyme Microb Technol; 2014 Feb 05; 55():107-12. PubMed ID: 24411452 [Abstract] [Full Text] [Related]
10. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A. Environ Sci Technol; 2005 Nov 15; 39(22):8853-7. PubMed ID: 16323786 [Abstract] [Full Text] [Related]
11. Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Walker AW, Keasling JD. Biotechnol Bioeng; 2002 Jun 30; 78(7):715-21. PubMed ID: 12001163 [Abstract] [Full Text] [Related]
12. Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A. Biodegradation; 2013 Apr 30; 24(2):295-303. PubMed ID: 22910813 [Abstract] [Full Text] [Related]
13. Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface- and intracellular-expressed organophosphorus hydrolase. Chungjatupornchai W, Fa-Aroonsawat S. J Microbiol Biotechnol; 2008 May 30; 18(5):946-51. PubMed ID: 18633296 [Abstract] [Full Text] [Related]
14. Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Lei Y, Mulchandani P, Chen W, Mulchandani A. Appl Biochem Biotechnol; 2007 Mar 30; 136(3):243-50. PubMed ID: 17625231 [Abstract] [Full Text] [Related]
15. Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A. Biotechnol Bioeng; 2004 Mar 30; 85(7):706-13. PubMed ID: 14991648 [Abstract] [Full Text] [Related]
16. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Gilbert ES, Walker AW, Keasling JD. Appl Microbiol Biotechnol; 2003 Mar 30; 61(1):77-81. PubMed ID: 12658518 [Abstract] [Full Text] [Related]
17. Biodegradation of p-nitrophenol by P. putida. Kulkarni M, Chaudhari A. Bioresour Technol; 2006 May 30; 97(8):982-8. PubMed ID: 16009549 [Abstract] [Full Text] [Related]
18. Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. Kaneva I, Mulchandani A, Chen W. Biotechnol Prog; 1998 May 30; 14(2):275-8. PubMed ID: 9548780 [Abstract] [Full Text] [Related]
19. Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Mulchandani P, Chen W, Mulchandani A. Anal Chim Acta; 2006 May 24; 568(1-2):217-21. PubMed ID: 17761263 [Abstract] [Full Text] [Related]
20. Bioremediation of organophosphorus pesticides by surface-expressed carboxylesterase from mosquito on Escherichia coli. Zhang J, Lan W, Qiao C, Jiang H, Mulchandani A, Chen W. Biotechnol Prog; 2004 May 24; 20(5):1567-71. PubMed ID: 15458345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]