These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 15935112
1. Diurnal and circadian retinomotor movements in zebrafish. Menger GJ, Koke JR, Cahill GM. Vis Neurosci; 2005; 22(2):203-9. PubMed ID: 15935112 [Abstract] [Full Text] [Related]
2. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE. Cavallaro B, Burnside B. Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263 [Abstract] [Full Text] [Related]
3. Time course and development of light adaptation processes in the outer zebrafish retina. Hodel C, Neuhauss SC, Biehlmaier O. Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):653-62. PubMed ID: 16721865 [Abstract] [Full Text] [Related]
4. Effects of circadian rhythm and cAMP on retinomotor movements in the green sunfish, Lepomis cyanellus. Burnside B, Ackland N. Invest Ophthalmol Vis Sci; 1984 May; 25(5):539-45. PubMed ID: 6325366 [Abstract] [Full Text] [Related]
5. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement. Burnside B, Adler R, O'Connor P. Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305 [Abstract] [Full Text] [Related]
6. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro. Burnside B, Basinger S. Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630 [Abstract] [Full Text] [Related]
7. Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine. Burnside B, Wang E, Pagh-Roehl K, Rey H. Exp Eye Res; 1993 Dec; 57(6):709-22. PubMed ID: 8150023 [Abstract] [Full Text] [Related]
8. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length. Levinson G, Burnside B. Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):294-303. PubMed ID: 7203876 [Abstract] [Full Text] [Related]
9. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP. Eckmiller MS, Burnside B. Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1328-32. PubMed ID: 6309697 [Abstract] [Full Text] [Related]
10. Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi). Lythgoe JN, Shand J. Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1203-10. PubMed ID: 6885308 [Abstract] [Full Text] [Related]
11. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors. Dearry A, Edelman JL, Miller S, Burnside B. J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019 [Abstract] [Full Text] [Related]
12. Light and circadian modulation of teleost retinal tyrosine hydroxylase activity. McCormack CA, Burnside B. Invest Ophthalmol Vis Sci; 1993 Apr; 34(5):1853-60. PubMed ID: 8097190 [Abstract] [Full Text] [Related]
13. The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium. Kunz YW, Ni Shuilleabhain M, Callaghan E. Exp Biol; 1985 Apr; 43(3):161-78. PubMed ID: 3846536 [Abstract] [Full Text] [Related]
14. Fine structure of the retina and pigment epithelium in the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei). Collin SP, Collin HB, Ali MA. Histol Histopathol; 1996 Jan; 11(1):41-53. PubMed ID: 8720447 [Abstract] [Full Text] [Related]
15. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors. Dearry A, Burnside B. J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104 [Abstract] [Full Text] [Related]
16. Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish. Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L. J Exp Biol; 2005 Feb; 208(Pt 3):497-504. PubMed ID: 15671338 [Abstract] [Full Text] [Related]
17. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Vihtelic TS, Soverly JE, Kassen SC, Hyde DR. Exp Eye Res; 2006 Apr; 82(4):558-75. PubMed ID: 16199033 [Abstract] [Full Text] [Related]
18. Photoreceptor fine structure in light- and dark-adaptation in the butterfly fish (Pantodon buchholzi). Braekevelt CR. Anat Anz; 1990 Apr; 171(5):351-8. PubMed ID: 2088152 [Abstract] [Full Text] [Related]
19. Evidence for an endogenous clock in the retina of rainbow trout: I. Retinomotor movements, dopamine and melatonin. Zaunreiter M, Brandstätter R, Goldschmid A. Neuroreport; 1998 Apr 20; 9(6):1205-9. PubMed ID: 9601695 [Abstract] [Full Text] [Related]
20. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. Burnside B, Evans M, Fletcher RT, Chader GJ. J Gen Physiol; 1982 May 20; 79(5):759-74. PubMed ID: 6284859 [Abstract] [Full Text] [Related] Page: [Next] [New Search]