These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 15935447
1. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Chen Y, Wang Y, Wu W, Lin Q, Xue S. Sci Total Environ; 2006 Mar 01; 356(1-3):247-55. PubMed ID: 15935447 [Abstract] [Full Text] [Related]
2. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX, Wang YP, Lin Q, Luo YM. Environ Int; 2005 Aug 01; 31(6):861-6. PubMed ID: 16005516 [Abstract] [Full Text] [Related]
3. Effect of sulphur on soil Cu/Zn availability and microbial community composition. Wang Y, Li Q, Hui W, Shi J, Lin Q, Chen X, Chen Y. J Hazard Mater; 2008 Nov 30; 159(2-3):385-9. PubMed ID: 18394797 [Abstract] [Full Text] [Related]
6. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Yang XE, Peng HY, Jiang LY, He ZL. Int J Phytoremediation; 2005 Nov 30; 7(1):69-83. PubMed ID: 15943245 [Abstract] [Full Text] [Related]
8. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q, Shen KL, Zhao HM, Li WH. J Hazard Mater; 2008 Feb 11; 150(3):515-21. PubMed ID: 17574741 [Abstract] [Full Text] [Related]
10. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H. FEMS Microbiol Ecol; 2004 May 01; 48(2):273-83. PubMed ID: 19712410 [Abstract] [Full Text] [Related]
11. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Guo Z, Megharaj M, Beer M, Ming H, Mahmudur Rahman M, Wu W, Naidu R. Bioresour Technol; 2009 Sep 01; 100(17):3831-6. PubMed ID: 19349173 [Abstract] [Full Text] [Related]
12. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Quartacci MF, Argilla A, Baker AJ, Navari-Izzo F. Chemosphere; 2006 May 01; 63(6):918-25. PubMed ID: 16307777 [Abstract] [Full Text] [Related]
16. Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil. Wu LH, Sun XF, Luo YM, Xing XR, Christie P. Int J Phytoremediation; 2007 May 01; 9(3):227-41. PubMed ID: 18246770 [Abstract] [Full Text] [Related]
17. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens]. Sun L, He L, Zhang Y, Zhang W, Wang Q, Sheng X. Wei Sheng Wu Xue Bao; 2009 Oct 01; 49(10):1360-6. PubMed ID: 20069883 [Abstract] [Full Text] [Related]
19. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM. Sci Total Environ; 2011 Sep 01; 409(19):4087-93. PubMed ID: 21741073 [Abstract] [Full Text] [Related]
20. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case. Wang FY, Lin XG, Yin R. Environ Pollut; 2007 May 01; 147(1):248-55. PubMed ID: 17011687 [Abstract] [Full Text] [Related] Page: [Next] [New Search]