These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 15935567
21. Inositol hexaphosphate hydrolysis by Baker's yeast. Capacity, kinetics, and degradation products. Türk M, Sandberg AS, Carlsson NG, Andlid T. J Agric Food Chem; 2000 Jan; 48(1):100-4. PubMed ID: 10637059 [Abstract] [Full Text] [Related]
22. Screening of yeast strains for phytase activity. Olstorpe M, Schnürer J, Passoth V. FEMS Yeast Res; 2009 May; 9(3):478-88. PubMed ID: 19416106 [Abstract] [Full Text] [Related]
23. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R. J Agric Food Chem; 2004 Oct 06; 52(20):6300-5. PubMed ID: 15453704 [Abstract] [Full Text] [Related]
25. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB. Mol Nutr Food Res; 2007 Nov 06; 51(11):1398-405. PubMed ID: 17966141 [Abstract] [Full Text] [Related]
26. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Oh BC, Choi WC, Park S, Kim YO, Oh TK. Appl Microbiol Biotechnol; 2004 Jan 06; 63(4):362-72. PubMed ID: 14586576 [Abstract] [Full Text] [Related]
27. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, van Loon AP, Pasamontes L. Protein Sci; 2000 Jul 06; 9(7):1304-11. PubMed ID: 10933495 [Abstract] [Full Text] [Related]
28. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility. Park YJ, Park J, Park KH, Oh BC, Auh JH. J Food Sci; 2011 Aug 06; 76(6):C791-4. PubMed ID: 21623782 [Abstract] [Full Text] [Related]
29. Cultural condition affecting the growth and production of beta-galactosidase by Bifidobacterium longum CCRC 15708 in a jar fermenter. Hsu CA, Yu RC, Lee SL, Chou CC. Int J Food Microbiol; 2007 May 01; 116(1):186-9. PubMed ID: 17320993 [Abstract] [Full Text] [Related]
30. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. Gulati HK, Chadha BS, Saini HS. J Ind Microbiol Biotechnol; 2007 Jan 01; 34(1):91-8. PubMed ID: 16967265 [Abstract] [Full Text] [Related]
31. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. Lan GQ, Abdullah N, Jalaludin S, Ho YW. J Appl Microbiol; 2002 Jan 01; 93(4):668-74. PubMed ID: 12234350 [Abstract] [Full Text] [Related]
32. Differential phytate utilization in Candida species. Tsang PW. Mycopathologia; 2011 Dec 01; 172(6):473-9. PubMed ID: 21792623 [Abstract] [Full Text] [Related]
33. In vitro and in vivo degradation of myo-inositol hexakisphosphate by a phytase from Citrobacter braakii. Pontoppidan K, Glitsoe V, Guggenbuhl P, Quintana AP, Nunes CS, Pettersson D, Sandberg AS. Arch Anim Nutr; 2012 Dec 01; 66(6):431-44. PubMed ID: 23098167 [Abstract] [Full Text] [Related]
34. Time course of formation of inositol phosphates during enzymatic hydrolysis of phytic acid (myo-inositol hexaphosphoric acid) by phytase determined by capillary isotachophoresis. Blatný P, Kvasnicka F, Kenndler E. J Chromatogr A; 1994 Sep 23; 679(2):345-8. PubMed ID: 7951996 [Abstract] [Full Text] [Related]
35. Partial characterization and purification of phytase from Lactobacillus plantarum CRL1964 isolated from pseudocereals. Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollán GC. J Basic Microbiol; 2020 Sep 23; 60(9):787-798. PubMed ID: 33448445 [Abstract] [Full Text] [Related]
36. In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY. Benef Microbes; 2010 Jun 23; 1(2):149-54. PubMed ID: 21831754 [Abstract] [Full Text] [Related]
37. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. Dai F, Qiu L, Xu Y, Cai S, Qiu B, Zhang G. J Agric Food Chem; 2010 Nov 24; 58(22):11821-4. PubMed ID: 21047062 [Abstract] [Full Text] [Related]
38. Comparison of phosphate estimating methods in the presence of phytic acid for the determination of phytase activity. Sanikommu S, Pasupuleti M, Vadalkonda L. Prep Biochem Biotechnol; 2014 Nov 24; 44(3):231-41. PubMed ID: 24274012 [Abstract] [Full Text] [Related]
39. Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Teighem. Vats P, Bhushan B, Banerjee UC. Bioresour Technol; 2009 Jan 24; 100(1):287-91. PubMed ID: 18650085 [Abstract] [Full Text] [Related]
40. Simple and rapid determination of phytase activity. Engelen AJ, van der Heeft FC, Randsdorp PH, Smit EL. J AOAC Int; 1994 Jan 24; 77(3):760-4. PubMed ID: 8012231 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]