These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 15937339
21. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. Sattlegger E, Hinnebusch AG. EMBO J; 2000 Dec 01; 19(23):6622-33. PubMed ID: 11101534 [Abstract] [Full Text] [Related]
22. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Ramirez M, Wek RC, Vazquez de Aldana CR, Jackson BM, Freeman B, Hinnebusch AG. Mol Cell Biol; 1992 Dec 01; 12(12):5801-15. PubMed ID: 1448107 [Abstract] [Full Text] [Related]
23. Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. Yamazaki H, Kasai S, Mimura J, Ye P, Inose-Maruyama A, Tanji K, Wakabayashi K, Mizuno S, Sugiyama F, Takahashi S, Sato T, Ozaki T, Cavener DR, Yamamoto M, Itoh K. PLoS Genet; 2020 Apr 01; 16(4):e1008693. PubMed ID: 32324833 [Abstract] [Full Text] [Related]
24. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. Kubota H, Obata T, Ota K, Sasaki T, Ito T. J Biol Chem; 2003 Jun 06; 278(23):20457-60. PubMed ID: 12676950 [Abstract] [Full Text] [Related]
25. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Berlanga JJ, Santoyo J, De Haro C. Eur J Biochem; 1999 Oct 06; 265(2):754-62. PubMed ID: 10504407 [Abstract] [Full Text] [Related]
26. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Gupta R, Hinnebusch AG. Proc Natl Acad Sci U S A; 2023 Apr 18; 120(16):e2300521120. PubMed ID: 37043534 [Abstract] [Full Text] [Related]
27. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. Silva RC, Sattlegger E, Castilho BA. J Cell Sci; 2016 Dec 15; 129(24):4521-4533. PubMed ID: 27852836 [Abstract] [Full Text] [Related]
28. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. Visweswaraiah J, Lageix S, Castilho BA, Izotova L, Kinzy TG, Hinnebusch AG, Sattlegger E. J Biol Chem; 2011 Oct 21; 286(42):36568-79. PubMed ID: 21849502 [Abstract] [Full Text] [Related]
29. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. Jiang HY, Wek RC. J Biol Chem; 2005 Apr 08; 280(14):14189-202. PubMed ID: 15684420 [Abstract] [Full Text] [Related]
30. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Sood R, Porter AC, Olsen DA, Cavener DR, Wek RC. Genetics; 2000 Feb 08; 154(2):787-801. PubMed ID: 10655230 [Abstract] [Full Text] [Related]
31. Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Pochopien AA, Beckert B, Kasvandik S, Berninghausen O, Beckmann R, Tenson T, Wilson DN. Proc Natl Acad Sci U S A; 2021 Apr 06; 118(14):. PubMed ID: 33790014 [Abstract] [Full Text] [Related]
32. Ribosome-binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control. Zhu S, Wek RC. J Biol Chem; 1998 Jan 16; 273(3):1808-14. PubMed ID: 9430731 [Abstract] [Full Text] [Related]
33. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth. Roffé M, Hajj GN, Azevedo HF, Alves VS, Castilho BA. J Biol Chem; 2013 Apr 12; 288(15):10860-9. PubMed ID: 23447528 [Abstract] [Full Text] [Related]
34. Distribution of the protein IMPACT, an inhibitor of GCN2, in the mouse, rat, and marmoset brain. Bittencourt S, Pereira CM, Avedissian M, Delamano A, Mello LE, Castilho BA. J Comp Neurol; 2008 Apr 10; 507(5):1811-30. PubMed ID: 18260151 [Abstract] [Full Text] [Related]
35. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Hannig EM, Williams NP, Wek RC, Hinnebusch AG. Genetics; 1990 Nov 10; 126(3):549-62. PubMed ID: 2249755 [Abstract] [Full Text] [Related]
36. Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control. Dokládal L, Stumpe M, Pillet B, Hu Z, Garcia Osuna GM, Kressler D, Dengjel J, De Virgilio C. Mol Cell; 2021 May 06; 81(9):1879-1889.e6. PubMed ID: 33743194 [Abstract] [Full Text] [Related]
37. Regulation of translation initiation by amino acids in eukaryotic cells. Kimball SR. Prog Mol Subcell Biol; 2001 May 06; 26():155-84. PubMed ID: 11575165 [Abstract] [Full Text] [Related]
38. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Cell; 1992 Feb 07; 68(3):585-96. PubMed ID: 1739968 [Abstract] [Full Text] [Related]
39. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in Saccharomyces cerevisiae. Caballero-Molada M, Planes MD, Benlloch H, Atares S, Naranjo MA, Serrano R. Biochem J; 2018 Apr 30; 475(8):1523-1534. PubMed ID: 29626156 [Abstract] [Full Text] [Related]
40. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Cherkasova VA, Hinnebusch AG. Genes Dev; 2003 Apr 01; 17(7):859-72. PubMed ID: 12654728 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]