These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
463 related items for PubMed ID: 15938637
1. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U, Asato AE, Sheves M. Biochemistry; 2005 Jun 14; 44(23):8479-85. PubMed ID: 15938637 [Abstract] [Full Text] [Related]
2. Local-access model for proton transfer in bacteriorhodopsin. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biochemistry; 1998 Mar 17; 37(11):3982-93. PubMed ID: 9521720 [Abstract] [Full Text] [Related]
3. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Richter HT, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1996 Apr 02; 35(13):4054-62. PubMed ID: 8672439 [Abstract] [Full Text] [Related]
4. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Dioumaev AK, Richter HT, Brown LS, Tanio M, Tuzi S, Saito H, Kimura Y, Needleman R, Lanyi JK. Biochemistry; 1998 Feb 24; 37(8):2496-506. PubMed ID: 9485398 [Abstract] [Full Text] [Related]
5. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Balashov SP, Lu M, Imasheva ES, Govindjee R, Ebrey TG, Othersen B, Chen Y, Crouch RK, Menick DR. Biochemistry; 1999 Feb 16; 38(7):2026-39. PubMed ID: 10026285 [Abstract] [Full Text] [Related]
6. Generation of the O630 photointermediate of bacteriorhodopsin is controlled by the state of protonation of several protein residues. Bressler S, Friedman N, Li Q, Ottolenghi M, Saha C, Sheves M. Biochemistry; 1999 Feb 16; 38(7):2018-25. PubMed ID: 10026284 [Abstract] [Full Text] [Related]
7. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D, Furutani Y, Kandori H. Biochemistry; 2007 May 08; 46(18):5365-73. PubMed ID: 17428036 [Abstract] [Full Text] [Related]
8. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G, Steinmüller S, Berndsen T, Buss V, Gärtner W. Biochemistry; 1998 Jun 02; 37(22):8227-32. PubMed ID: 9609719 [Abstract] [Full Text] [Related]
9. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 02; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
10. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biophys J; 1998 Sep 02; 75(3):1455-65. PubMed ID: 9726947 [Abstract] [Full Text] [Related]
11. Time-resolved titrations of ASP-85 in bacteriorhodopsin: the multicomponent kinetic mechanism. Friedman N, Rousso I, Sheves M, Fu X, Bressler S, Druckmann S, Ottolenghi M. Biochemistry; 1997 Sep 23; 36(38):11369-80. PubMed ID: 9298956 [Abstract] [Full Text] [Related]
12. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M, Furutani Y, Kamo N, Kandori H. Biochemistry; 2003 Mar 18; 42(10):2790-6. PubMed ID: 12627944 [Abstract] [Full Text] [Related]
13. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
14. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Brown LS, Needleman R, Lanyi JK. Biochemistry; 1996 Dec 17; 35(50):16048-54. PubMed ID: 8973174 [Abstract] [Full Text] [Related]
15. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2005 Apr 26; 44(16):5960-8. PubMed ID: 15835885 [Abstract] [Full Text] [Related]
17. Effects of arginine-82 on the interactions of internal water molecules in bacteriorhodopsin. Hatanaka M, Sasaki J, Kandori H, Ebrey TG, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1996 May 21; 35(20):6308-12. PubMed ID: 8639574 [Abstract] [Full Text] [Related]
18. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
19. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Subramaniam S, Henderson R. Nature; 2000 Aug 10; 406(6796):653-7. PubMed ID: 10949309 [Abstract] [Full Text] [Related]
20. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related] Page: [Next] [New Search]