These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
648 related items for PubMed ID: 15943818
21. Biophysical and structural analysis of a novel heme B iron ligation in the flavocytochrome cellobiose dehydrogenase. Rotsaert FA, Hallberg BM, de Vries S, Moenne-Loccoz P, Divne C, Renganathan V, Gold MH. J Biol Chem; 2003 Aug 29; 278(35):33224-31. PubMed ID: 12796496 [Abstract] [Full Text] [Related]
26. Characterization of cellobiose dehydrogenase and its FAD-domain from the ligninolytic basidiomycete Pycnoporus sanguineus. Sulej J, Janusz G, Osińska-Jaroszuk M, Małek P, Mazur A, Komaniecka I, Choma A, Rogalski J. Enzyme Microb Technol; 2013 Dec 10; 53(6-7):427-37. PubMed ID: 24315647 [Abstract] [Full Text] [Related]
28. Temperature-jump and potentiometric studies on recombinant wild type and Y143F and Y254F mutants of Saccharomyces cerevisiae flavocytochrome b2: role of the driving force in intramolecular electron transfer kinetics. Tegoni M, Silvestrini MC, Guigliarelli B, Asso M, Brunori M, Bertrand P. Biochemistry; 1998 Sep 15; 37(37):12761-71. PubMed ID: 9737853 [Abstract] [Full Text] [Related]
29. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D. Gene; 2004 Aug 18; 338(1):1-14. PubMed ID: 15302401 [Abstract] [Full Text] [Related]
31. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry. Wolthers KR, Scrutton NS. Biochemistry; 2004 Jan 20; 43(2):490-500. PubMed ID: 14717604 [Abstract] [Full Text] [Related]
34. Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. Kracher D, Zahma K, Schulz C, Sygmund C, Gorton L, Ludwig R. FEBS J; 2015 Aug 20; 282(16):3136-48. PubMed ID: 25913436 [Abstract] [Full Text] [Related]
35. Localized deposition of Au nanoparticles by direct electron transfer through cellobiose dehydrogenase. Malel E, Ludwig R, Gorton L, Mandler D. Chemistry; 2010 Oct 11; 16(38):11697-706. PubMed ID: 20821760 [Abstract] [Full Text] [Related]
37. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G. Biochemistry; 2005 Oct 11; 44(40):13291-303. PubMed ID: 16201755 [Abstract] [Full Text] [Related]
38. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Kadek A, Kavan D, Marcoux J, Stojko J, Felice AK, Cianférani S, Ludwig R, Halada P, Man P. Biochim Biophys Acta Gen Subj; 2017 Feb 11; 1861(2):157-167. PubMed ID: 27851982 [Abstract] [Full Text] [Related]
40. Interaction of cytochrome c with flavocytochrome b2. Daff S, Sharp RE, Short DM, Bell C, White P, Manson FD, Reid GA, Chapman SK. Biochemistry; 1996 May 21; 35(20):6351-7. PubMed ID: 8639580 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]