These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


78 related items for PubMed ID: 1594575

  • 1. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation.
    Bass MB, Paulsen MD, Ornstein RL.
    Proteins; 1992 May; 13(1):26-37. PubMed ID: 1594575
    [Abstract] [Full Text] [Related]

  • 2. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD, Filipovic D, Sligar SG, Ornstein RL.
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [Abstract] [Full Text] [Related]

  • 3. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK, Lounnas V, Wade RC.
    J Mol Biol; 2000 Nov 10; 303(5):797-811. PubMed ID: 11061976
    [Abstract] [Full Text] [Related]

  • 4. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
    Raag R, Poulos TL.
    Biochemistry; 1991 Mar 12; 30(10):2674-84. PubMed ID: 2001355
    [Abstract] [Full Text] [Related]

  • 5. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor.
    Schulze H, Hoa GH, Helms V, Wade RC, Jung C.
    Biochemistry; 1996 Nov 12; 35(45):14127-38. PubMed ID: 8916898
    [Abstract] [Full Text] [Related]

  • 6. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R, Poulos TL.
    Biochemistry; 1989 Jan 24; 28(2):917-22. PubMed ID: 2713354
    [Abstract] [Full Text] [Related]

  • 7. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR, Loew GH.
    J Biol Chem; 1988 Mar 05; 263(7):3164-70. PubMed ID: 3343243
    [Abstract] [Full Text] [Related]

  • 8. The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis.
    Atkins WM, Sligar SG.
    J Biol Chem; 1988 Dec 15; 263(35):18842-9. PubMed ID: 3198602
    [Abstract] [Full Text] [Related]

  • 9. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam.
    Paulsen MD, Ornstein RL.
    Proteins; 1991 Dec 15; 11(3):184-204. PubMed ID: 1749772
    [Abstract] [Full Text] [Related]

  • 10. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD, Bass MB, Ornstein RL.
    J Biomol Struct Dyn; 1991 Oct 15; 9(2):187-203. PubMed ID: 1741957
    [Abstract] [Full Text] [Related]

  • 11. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S.
    Biochim Biophys Acta; 2007 Mar 15; 1770(3):360-75. PubMed ID: 17134838
    [Abstract] [Full Text] [Related]

  • 12. Cytochrome P-450cam and putidaredoxin interaction during electron transfer.
    Peterson JA, Mock DM.
    Acta Biol Med Ger; 1979 Mar 15; 38(2-3):153-62. PubMed ID: 229672
    [Abstract] [Full Text] [Related]

  • 13. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations.
    Loida PJ, Sligar SG, Paulsen MD, Arnold GE, Ornstein RL.
    J Biol Chem; 1995 Mar 10; 270(10):5326-30. PubMed ID: 7890644
    [Abstract] [Full Text] [Related]

  • 14. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP, Shaik S.
    J Am Chem Soc; 2003 Jun 18; 125(24):7413-24. PubMed ID: 12797816
    [Abstract] [Full Text] [Related]

  • 15. Step-scan time-resolved FTIR spectroscopy of cytochrome P-450cam carbon monoxide complex: a salt link involved in the ligand-rebinding process.
    Contzen J, Jung C.
    Biochemistry; 1998 Mar 31; 37(13):4317-24. PubMed ID: 9556346
    [Abstract] [Full Text] [Related]

  • 16. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z.
    J Am Chem Soc; 2003 Jan 22; 125(3):705-14. PubMed ID: 12526670
    [Abstract] [Full Text] [Related]

  • 17. Theoretical studies of cytochrome P-450. Characterization of stable and transient active states, reaction mechanisms and substrate-enzyme interactions.
    Loew GH, Collins J, Luke B, Waleh A, Pudzianowski A.
    Enzyme; 1986 Jan 22; 36(1-2):54-78. PubMed ID: 3792295
    [Abstract] [Full Text] [Related]

  • 18. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger.
    Faber BW, van Gorcom RF, Duine JA.
    Arch Biochem Biophys; 2001 Oct 15; 394(2):245-54. PubMed ID: 11594739
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC, Westlake AC, Maréchal JD, Joyce MG, Moody PC, Roberts GC.
    J Mol Biol; 2007 Oct 26; 373(3):633-51. PubMed ID: 17868686
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.