These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 15949548

  • 1. Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films.
    Serrano MC, Pagani R, Peña J, Portolés MT.
    Biomaterials; 2005 Oct; 26(29):5827-34. PubMed ID: 15949548
    [Abstract] [Full Text] [Related]

  • 2. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films.
    Serrano MC, Pagani R, Manzano M, Comas JV, Portolés MT.
    Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794
    [Abstract] [Full Text] [Related]

  • 3. Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study.
    Serrano MC, Pagani R, Vallet-Regí M, Peña J, Comas JV, Portolés MT.
    Acta Biomater; 2009 Jul; 5(6):2045-53. PubMed ID: 19332384
    [Abstract] [Full Text] [Related]

  • 4. Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOH-treated poly(epsilon-caprolactone) films.
    Serrano MC, Pagani R, Ameer GA, Vallet-Regí M, Portolés MT.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):964-71. PubMed ID: 18257077
    [Abstract] [Full Text] [Related]

  • 5. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF.
    Biomaterials; 2004 Aug 15; 25(19):4741-8. PubMed ID: 15120520
    [Abstract] [Full Text] [Related]

  • 6. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A, Madihally SV.
    Biomaterials; 2005 Sep 15; 26(27):5500-8. PubMed ID: 15860206
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-betaTCP/agarose biomaterial.
    Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, Nieto A, Vallet-Regí M, Portolés MT.
    J Biomed Mater Res A; 2009 May 15; 89(2):539-49. PubMed ID: 18437697
    [Abstract] [Full Text] [Related]

  • 9. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR, Adams EF, Coombes AG.
    Biomaterials; 2006 Mar 15; 27(7):1019-26. PubMed ID: 16054685
    [Abstract] [Full Text] [Related]

  • 10. In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts.
    Serrano MC, Pagani R, Vallet-Regí M, Peña J, Rámila A, Izquierdo I, Portolés MT.
    Biomaterials; 2004 Nov 15; 25(25):5603-11. PubMed ID: 15159076
    [Abstract] [Full Text] [Related]

  • 11. Vascular endothelial and smooth muscle cell culture on NaOH-treated poly(epsilon-caprolactone) films: a preliminary study for vascular graft development.
    Serrano MC, Portolés MT, Vallet-Regí M, Izquierdo I, Galletti L, Comas JV, Pagani R.
    Macromol Biosci; 2005 May 23; 5(5):415-23. PubMed ID: 15895476
    [Abstract] [Full Text] [Related]

  • 12. The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly(epsilon-caprolactone) membrane substrate.
    Ang LP, Cheng ZY, Beuerman RW, Teoh SH, Zhu X, Tan DT.
    Invest Ophthalmol Vis Sci; 2006 Jan 23; 47(1):105-12. PubMed ID: 16384951
    [Abstract] [Full Text] [Related]

  • 13. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT, Gümüşderelioğlu M, Gürpinar A, Onur MA.
    Biomed Mater Eng; 2008 Jan 23; 18(3):119-28. PubMed ID: 18725692
    [Abstract] [Full Text] [Related]

  • 14. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films.
    Bat E, van Kooten TG, Feijen J, Grijpma DW.
    Biomaterials; 2009 Aug 23; 30(22):3652-61. PubMed ID: 19356797
    [Abstract] [Full Text] [Related]

  • 15. Progenitor-derived endothelial cell response, platelet reactivity and haemocompatibility parameters indicate the potential of NaOH-treated polycaprolactone for vascular tissue engineering.
    Serrano MC, Pagani R, Peña J, Vallet-Regí M, Comas JV, Portolés MT.
    J Tissue Eng Regen Med; 2011 Mar 23; 5(3):238-47. PubMed ID: 20687124
    [Abstract] [Full Text] [Related]

  • 16. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V, Ciardelli G, Vozzi G, Sotgiu MG, Vinci B, Domenici C, Giusti P.
    J Biomed Mater Res A; 2008 Jun 15; 85(4):938-53. PubMed ID: 17896770
    [Abstract] [Full Text] [Related]

  • 17. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold.
    Pankajakshan D, Krishnan V K, Krishnan LK.
    J Tissue Eng Regen Med; 2007 Jun 15; 1(5):389-97. PubMed ID: 18038433
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A co-cultured skin model based on cell support membranes.
    Dai NT, Yeh MK, Liu DD, Adams EF, Chiang CH, Yen CY, Shih CM, Sytwu HK, Chen TM, Wang HJ, Williamson MR, Coombes AG.
    Biochem Biophys Res Commun; 2005 Apr 15; 329(3):905-8. PubMed ID: 15752741
    [Abstract] [Full Text] [Related]

  • 20. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin.
    Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG.
    Biomaterials; 2004 Aug 15; 25(18):4263-71. PubMed ID: 15046916
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.