These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 15952773
1. Accessibility of the distal heme face, rather than Fe-His bond strength, determines the heme-nitrosyl coordination number of cytochromes c': evidence from spectroscopic studies. Andrew CR, Kemper LJ, Busche TL, Tiwari AM, Kecskes MC, Stafford JM, Croft LC, Lu S, Moënne-Loccoz P, Huston W, Moir JW, Eady RR. Biochemistry; 2005 Jun 21; 44(24):8664-72. PubMed ID: 15952773 [Abstract] [Full Text] [Related]
2. Heterologous overexpression and purification of cytochrome c' from Rhodobacter capsulatus and a mutant (K42E) in the dimerization region. Mutation does not alter oligomerization but impacts the heme iron spin state and nitric oxide binding properties. Huston WM, Andrew CR, Servid AE, McKay AL, Leech AP, Butler CS, Moir JW. Biochemistry; 2006 Apr 11; 45(14):4388-95. PubMed ID: 16584174 [Abstract] [Full Text] [Related]
3. High-resolution crystal structures of two polymorphs of cytochrome c' from the purple phototrophic bacterium rhodobacter capsulatus. Tahirov TH, Misaki S, Meyer TE, Cusanovich MA, Higuchi Y, Yasuoka N. J Mol Biol; 1996 Jun 14; 259(3):467-79. PubMed ID: 8676382 [Abstract] [Full Text] [Related]
4. Activation parameters for heme-NO binding in alcaligenes xylosoxidans cytochrome c': the putative dinitrosyl intermediate forms via a dissociative mechanism. Pixton DA, Petersen CA, Franke A, van Eldik R, Garton EM, Andrew CR. J Am Chem Soc; 2009 Apr 08; 131(13):4846-53. PubMed ID: 19334778 [Abstract] [Full Text] [Related]
5. Characterization of ferrous FixL-nitric oxide adducts by resonance Raman spectroscopy. Lukat-Rodgers GS, Rodgers KR. Biochemistry; 1997 Apr 08; 36(14):4178-87. PubMed ID: 9100012 [Abstract] [Full Text] [Related]
6. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment. Servid AE, McKay AL, Davis CA, Garton EM, Manole A, Dobbin PS, Hough MA, Andrew CR. Biochemistry; 2015 Jun 02; 54(21):3320-7. PubMed ID: 25961377 [Abstract] [Full Text] [Related]
7. Six- to five-coordinate heme-nitrosyl conversion in cytochrome c' and its relevance to guanylate cyclase. Andrew CR, George SJ, Lawson DM, Eady RR. Biochemistry; 2002 Feb 19; 41(7):2353-60. PubMed ID: 11841228 [Abstract] [Full Text] [Related]
8. Nitric oxide interaction with cytochrome c' and its relevance to guanylate cyclase. Why does the iron histidine bond break? Martí MA, Capece L, Crespo A, Doctorovich F, Estrin DA. J Am Chem Soc; 2005 Jun 01; 127(21):7721-8. PubMed ID: 15913362 [Abstract] [Full Text] [Related]
9. Versatility of heme coordination demonstrated in a fungal peroxidase. Absorption and resonance Raman studies of Coprinus cinereus peroxidase and the Asp245-->Asn mutant at various pH values. Smulevich G, Neri F, Marzocchi MP, Welinder KG. Biochemistry; 1996 Aug 13; 35(32):10576-85. PubMed ID: 8756714 [Abstract] [Full Text] [Related]
10. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy. Deinum G, Stone JR, Babcock GT, Marletta MA. Biochemistry; 1996 Feb 06; 35(5):1540-7. PubMed ID: 8634285 [Abstract] [Full Text] [Related]
11. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK, Paulat F, Berto TC, George SD, Näther C, Sulok CD, Lehnert N. J Am Chem Soc; 2008 Nov 19; 130(46):15288-303. PubMed ID: 18942830 [Abstract] [Full Text] [Related]
12. Distal-to-proximal NO conversion in hemoproteins: the role of the proximal pocket. Hough MA, Antonyuk SV, Barbieri S, Rustage N, McKay AL, Servid AE, Eady RR, Andrew CR, Hasnain SS. J Mol Biol; 2011 Jan 14; 405(2):395-409. PubMed ID: 21073879 [Abstract] [Full Text] [Related]
13. Resonance raman characterization of the heme domain of soluble guanylate cyclase. Schelvis JP, Zhao Y, Marletta MA, Babcock GT. Biochemistry; 1998 Nov 17; 37(46):16289-97. PubMed ID: 9819221 [Abstract] [Full Text] [Related]
14. Resonance Raman studies of cytochrome c' support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors. Andrew CR, Green EL, Lawson DM, Eady RR. Biochemistry; 2001 Apr 03; 40(13):4115-22. PubMed ID: 11300792 [Abstract] [Full Text] [Related]
15. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase. Jackson TA, Yikilmaz E, Miller AF, Brunold TC. J Am Chem Soc; 2003 Jul 09; 125(27):8348-63. PubMed ID: 12837107 [Abstract] [Full Text] [Related]
16. Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Goodrich LE, Paulat F, Praneeth VK, Lehnert N. Inorg Chem; 2010 Jul 19; 49(14):6293-316. PubMed ID: 20666388 [Abstract] [Full Text] [Related]
17. Picosecond binding of the His ligand to four-coordinate heme in cytochrome c': a one-way gate for releasing proximal NO. Yoo BK, Lamarre I, Martin JL, Andrew CR, Negrerie M. J Am Chem Soc; 2013 Feb 27; 135(8):3248-54. PubMed ID: 23373628 [Abstract] [Full Text] [Related]
18. Spectroscopic characterization of hydroxide and aqua complexes of Fe(II)-protoheme, structural models for the axial coordination of the atypical heme of membrane cytochrome b6f complexes. Gomez de Gracia A, Bordes L, Desbois A. J Am Chem Soc; 2005 Dec 21; 127(50):17634-43. PubMed ID: 16351093 [Abstract] [Full Text] [Related]
19. A novel kinetic trap for NO release from cytochrome c': a possible mechanism for NO release from activated soluble guanylate cyclase. Andrew CR, Rodgers KR, Eady RR. J Am Chem Soc; 2003 Aug 13; 125(32):9548-9. PubMed ID: 12903995 [Abstract] [Full Text] [Related]