These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 15954644

  • 21. A simplified approach for modelling the bacterial growth/no growth boundary.
    Polese P, Del Torre M, Spaziani M, Stecchini ML.
    Food Microbiol; 2011 May; 28(3):384-91. PubMed ID: 21356442
    [Abstract] [Full Text] [Related]

  • 22. Cell division theory and individual-based modeling of microbial lag: part II. Modeling lag phenomena induced by temperature shifts.
    Dens EJ, Bernaerts K, Standaert AR, Kreft JU, Van Impe JF.
    Int J Food Microbiol; 2005 Jun 15; 101(3):319-32. PubMed ID: 15913823
    [Abstract] [Full Text] [Related]

  • 23. Estimation of microbial growth using population measurements subject to a detection limit.
    Shorten PR, Pleasants AB, Soboleva TK.
    Int J Food Microbiol; 2006 May 01; 108(3):369-75. PubMed ID: 16497400
    [Abstract] [Full Text] [Related]

  • 24. Introduction to predictive modelling special issue. Preface.
    Koutsoumanis K, McMeekin T, Dalgaard P.
    Int J Food Microbiol; 2008 Nov 30; 128(1):1. PubMed ID: 18835055
    [No Abstract] [Full Text] [Related]

  • 25. Germination and growth from spores: variability and uncertainty in the assessment of food borne hazards.
    Barker GC, Malakar PK, Peck MW.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):67-76. PubMed ID: 15854693
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. A study on the variability in the growth limits of individual cells and its effect on the behavior of microbial populations.
    Koutsoumanis K.
    Int J Food Microbiol; 2008 Nov 30; 128(1):116-21. PubMed ID: 18760853
    [Abstract] [Full Text] [Related]

  • 29. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG, Peleg M.
    Int J Food Microbiol; 2006 Apr 15; 108(1):22-35. PubMed ID: 16403587
    [Abstract] [Full Text] [Related]

  • 30. Identification of non-linear microbial inactivation kinetics under dynamic conditions.
    Valdramidis VP, Geeraerd AH, Bernaerts K, Van Impe JF.
    Int J Food Microbiol; 2008 Nov 30; 128(1):146-52. PubMed ID: 18823671
    [Abstract] [Full Text] [Related]

  • 31. Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study.
    Swinnen IA, Bernaerts K, Gysemans K, Van Impe JF.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):85-96. PubMed ID: 15854695
    [Abstract] [Full Text] [Related]

  • 32. Modelling of growth of aflatoxigenic A. flavus isolates from red chilli powder as a function of water availability.
    Marín S, Colom C, Sanchis V, Ramos AJ.
    Int J Food Microbiol; 2009 Jan 15; 128(3):491-6. PubMed ID: 19046614
    [Abstract] [Full Text] [Related]

  • 33. The future of predictive microbiology: strategic research, innovative applications and great expectations.
    McMeekin T, Bowman J, McQuestin O, Mellefont L, Ross T, Tamplin M.
    Int J Food Microbiol; 2008 Nov 30; 128(1):2-9. PubMed ID: 18703250
    [Abstract] [Full Text] [Related]

  • 34. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
    Koseki S.
    Int J Food Microbiol; 2009 Aug 31; 134(1-2):75-82. PubMed ID: 19181410
    [Abstract] [Full Text] [Related]

  • 35. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.
    Huang L.
    J Food Sci; 2008 Jun 31; 73(5):E235-42. PubMed ID: 18576996
    [Abstract] [Full Text] [Related]

  • 36. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.
    Pal A, Labuza TP, Diez-Gonzalez F.
    Food Microbiol; 2008 May 31; 25(3):460-70. PubMed ID: 18355671
    [Abstract] [Full Text] [Related]

  • 37. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.
    Van Derlinden E, Bernaerts K, Van Impe JF.
    Int J Food Microbiol; 2008 Nov 30; 128(1):89-100. PubMed ID: 18835500
    [Abstract] [Full Text] [Related]

  • 38. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase.
    Prats C, López D, Giró A, Ferrer J, Valls J.
    J Theor Biol; 2006 Aug 21; 241(4):939-53. PubMed ID: 16524598
    [Abstract] [Full Text] [Related]

  • 39. Basis of predictive mycology.
    Dantigny P, Guilmart A, Bensoussan M.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):187-96. PubMed ID: 15854704
    [Abstract] [Full Text] [Related]

  • 40. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.
    Mafart P.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):239-51. PubMed ID: 15854709
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.