These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 15959801

  • 1. Comparison between maximal power in the power-endurance relationship and maximal instantaneous power.
    Chatagnon M, Pouilly JP, Thomas V, Busso T.
    Eur J Appl Physiol; 2005 Aug; 94(5-6):711-7. PubMed ID: 15959801
    [Abstract] [Full Text] [Related]

  • 2. Modelling of aerobic and anaerobic energy production during exhaustive exercise on a cycle ergometer.
    Chatagnon M, Busso T.
    Eur J Appl Physiol; 2006 Aug; 97(6):755-60. PubMed ID: 16786356
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Experimental validation of the 3-parameter critical power model in cycling.
    Vinetti G, Taboni A, Bruseghini P, Camelio S, D'Elia M, Fagoni N, Moia C, Ferretti G.
    Eur J Appl Physiol; 2019 Apr; 119(4):941-949. PubMed ID: 30694386
    [Abstract] [Full Text] [Related]

  • 6. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A.
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [Abstract] [Full Text] [Related]

  • 7. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J, de Souza KM, de Lucas RD, Guglielmo LG, Greco CC, Denadai BS.
    PLoS One; 2015 Dec; 10(9):e0138428. PubMed ID: 26407169
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ.
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [Abstract] [Full Text] [Related]

  • 12. Influence of prior sprint exercise on the parameters of the 'all-out critical power test' in men.
    Vanhatalo A, Jones AM.
    Exp Physiol; 2009 Feb; 94(2):255-63. PubMed ID: 18996948
    [Abstract] [Full Text] [Related]

  • 13. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF, Chidnok W, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [Abstract] [Full Text] [Related]

  • 14. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A.
    Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans.
    Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y.
    Eur J Appl Physiol; 2002 Jul 01; 87(3):238-44. PubMed ID: 12111284
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.