These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
397 related items for PubMed ID: 15961114
1. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Ruina A, Bertram JE, Srinivasan M. J Theor Biol; 2005 Nov 21; 237(2):170-92. PubMed ID: 15961114 [Abstract] [Full Text] [Related]
2. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267 [Abstract] [Full Text] [Related]
3. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data? Srinivasan M, Holmes P. J Theor Biol; 2008 Nov 07; 255(1):1-7. PubMed ID: 18671984 [Abstract] [Full Text] [Related]
4. A model of bipedal locomotion on compliant legs. Alexander RM. Philos Trans R Soc Lond B Biol Sci; 1992 Oct 29; 338(1284):189-98. PubMed ID: 1360684 [Abstract] [Full Text] [Related]
5. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Sasaki K, Neptune RR. Gait Posture; 2006 Apr 29; 23(3):383-90. PubMed ID: 16029949 [Abstract] [Full Text] [Related]
6. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F, Minetti AE. Eur J Appl Physiol; 2003 Jan 29; 88(4-5):297-316. PubMed ID: 12527959 [Abstract] [Full Text] [Related]
7. An analytical estimation of the energy cost for legged locomotion. Nishii J. J Theor Biol; 2006 Feb 07; 238(3):636-45. PubMed ID: 16084529 [Abstract] [Full Text] [Related]
8. Bipedal walking and running with spring-like biarticular muscles. Iida F, Rummel J, Seyfarth A. J Biomech; 2008 Feb 07; 41(3):656-67. PubMed ID: 17996242 [Abstract] [Full Text] [Related]
9. Biomechanics of human bipedal gallop: asymmetry dictates leg function. Fiers P, De Clercq D, Segers V, Aerts P. J Exp Biol; 2013 Apr 01; 216(Pt 7):1338-49. PubMed ID: 23239890 [Abstract] [Full Text] [Related]
10. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant. Neptune RR, Zajac FE, Kautz SA. J Biomech; 2004 Jun 01; 37(6):817-25. PubMed ID: 15111069 [Abstract] [Full Text] [Related]
11. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods. Reilly SM, McElroy EJ, Biknevicius AR. Zoology (Jena); 2007 Jun 01; 110(4):271-89. PubMed ID: 17482802 [Abstract] [Full Text] [Related]
12. The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike. Kim S, Park S. J Biomech; 2012 Jan 10; 45(2):326-33. PubMed ID: 22035641 [Abstract] [Full Text] [Related]
13. Computer optimization of a minimal biped model discovers walking and running. Srinivasan M, Ruina A. Nature; 2006 Jan 05; 439(7072):72-5. PubMed ID: 16155564 [Abstract] [Full Text] [Related]
14. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. Rubenson J, Heliams DB, Maloney SK, Withers PC, Lloyd DG, Fournier PA. J Exp Biol; 2007 Oct 05; 210(Pt 20):3513-24. PubMed ID: 17921153 [Abstract] [Full Text] [Related]
15. Leg recirculation in horizontal plane locomotion. Wickramasuriya A, Schmitt J. Biol Cybern; 2009 Oct 05; 101(4):247-63. PubMed ID: 19787371 [Abstract] [Full Text] [Related]
16. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. Moritz CT, Farley CT. J Exp Biol; 2005 Mar 05; 208(Pt 5):939-49. PubMed ID: 15755892 [Abstract] [Full Text] [Related]
17. Differences in muscle function during walking and running at the same speed. Sasaki K, Neptune RR. J Biomech; 2006 Mar 05; 39(11):2005-13. PubMed ID: 16129444 [Abstract] [Full Text] [Related]
18. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds. Pontzer H. J Exp Biol; 2007 Feb 05; 210(Pt 3):484-94. PubMed ID: 17234618 [Abstract] [Full Text] [Related]
19. Maneuvers during legged locomotion. Jindrich DL, Qiao M. Chaos; 2009 Jun 05; 19(2):026105. PubMed ID: 19566265 [Abstract] [Full Text] [Related]
20. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait. Caldwell GE, Forrester LW. Med Sci Sports Exerc; 1992 Dec 05; 24(12):1396-412. PubMed ID: 1470024 [Abstract] [Full Text] [Related] Page: [Next] [New Search]