These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


644 related items for PubMed ID: 15966723

  • 1. Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction.
    Xia Z, Azurmendi HF, Lairson LL, Withers SG, Gabelli SB, Bianchet MA, Amzel LM, Mildvan AS.
    Biochemistry; 2005 Jun 28; 44(25):8989-97. PubMed ID: 15966723
    [Abstract] [Full Text] [Related]

  • 2. X-ray, NMR, and mutational studies of the catalytic cycle of the GDP-mannose mannosyl hydrolase reaction.
    Gabelli SB, Azurmendi HF, Bianchet MA, Amzel LM, Mildvan AS.
    Biochemistry; 2006 Sep 26; 45(38):11290-303. PubMed ID: 16981689
    [Abstract] [Full Text] [Related]

  • 3. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM, Massiah MA, Mildvan AS.
    Biochemistry; 2002 Sep 03; 41(35):10834-48. PubMed ID: 12196023
    [Abstract] [Full Text] [Related]

  • 4. Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus.
    Gabelli SB, Bianchet MA, Azurmendi HF, Xia Z, Sarawat V, Mildvan AS, Amzel LM.
    Structure; 2004 Jun 03; 12(6):927-35. PubMed ID: 15274914
    [Abstract] [Full Text] [Related]

  • 5. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM, Lee HC, Peisach J, Mildvan AS.
    Biochemistry; 2002 Apr 09; 41(14):4655-68. PubMed ID: 11926828
    [Abstract] [Full Text] [Related]

  • 6. Structures and mechanisms of Nudix hydrolases.
    Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM.
    Arch Biochem Biophys; 2005 Jan 01; 433(1):129-43. PubMed ID: 15581572
    [Abstract] [Full Text] [Related]

  • 7. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS.
    Biochemistry; 2004 Apr 13; 43(14):4082-91. PubMed ID: 15065850
    [Abstract] [Full Text] [Related]

  • 8. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L, Li Z, Wang C, Xu D, Mariano PS, Guo H, Dunaway-Mariano D.
    Biochemistry; 2008 Apr 22; 47(16):4721-32. PubMed ID: 18366187
    [Abstract] [Full Text] [Related]

  • 9. Mechanism and specificity of human alpha-1,3-fucosyltransferase V.
    Murray BW, Takayama S, Schultz J, Wong CH.
    Biochemistry; 1996 Aug 27; 35(34):11183-95. PubMed ID: 8780523
    [Abstract] [Full Text] [Related]

  • 10. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.
    Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M.
    J Mol Biol; 2000 Oct 13; 303(1):77-91. PubMed ID: 11021971
    [Abstract] [Full Text] [Related]

  • 11. Molecular basis for substrate selectivity and specificity by an LPS biosynthetic enzyme.
    Zou Y, Li C, Brunzelle JS, Nair SK.
    Biochemistry; 2007 Apr 10; 46(14):4294-304. PubMed ID: 17371001
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Structure and mechanism of action of an inverting mutant sialidase.
    Newstead S, Watson JN, Knoll TL, Bennet AJ, Taylor G.
    Biochemistry; 2005 Jun 28; 44(25):9117-22. PubMed ID: 15966735
    [Abstract] [Full Text] [Related]

  • 15. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S.
    Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053
    [Abstract] [Full Text] [Related]

  • 16. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252
    [Abstract] [Full Text] [Related]

  • 17. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB.
    Biochemistry; 1999 May 11; 38(19):6012-24. PubMed ID: 10320327
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK, Wu G, Massiah MA, Mildvan AS.
    Biochemistry; 2000 Feb 22; 39(7):1655-74. PubMed ID: 10677214
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.