These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


335 related items for PubMed ID: 15968514

  • 1. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C(3)-CAM species.
    Winter K, Holtum JA.
    Planta; 2005 Sep; 222(1):201-9. PubMed ID: 15968514
    [Abstract] [Full Text] [Related]

  • 2. Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Winter K, Holtum JA.
    Plant Physiol; 2007 Jan; 143(1):98-107. PubMed ID: 17056756
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Dodd AN, Griffiths H, Taybi T, Cushman JC, Borland AM.
    Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant.
    Yu K, D'Odorico P, Li W, He Y.
    Oecologia; 2017 Jun; 184(2):351-361. PubMed ID: 28401290
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism.
    Libik M, Pater B, Elliot S, Slesak I, Miszalskia Z.
    Z Naturforsch C J Biosci; 2004 Jun; 59(3-4):223-8. PubMed ID: 15241931
    [Abstract] [Full Text] [Related]

  • 10. Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress.
    Winter K, Ziegler H.
    Oecologia; 1992 Dec; 92(4):475-479. PubMed ID: 28313217
    [Abstract] [Full Text] [Related]

  • 11. LED spectral quality and NaCl salinity interact to affect growth, photosynthesis and phytochemical production of Mesembryanthemum crystallinum.
    He J, Koh DJQ, Qin L.
    Funct Plant Biol; 2022 May; 49(6):483-495. PubMed ID: 33972013
    [Abstract] [Full Text] [Related]

  • 12. A CAM- and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity.
    Haider MS, Barnes JD, Cushman JC, Borland AM.
    J Exp Bot; 2012 Mar; 63(5):1985-96. PubMed ID: 22219316
    [Abstract] [Full Text] [Related]

  • 13. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN, Griffiths H.
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [Abstract] [Full Text] [Related]

  • 14. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C3 to crassulacean acid metabolism.
    Wakamatsu A, Mori IC, Matsuura T, Taniwaki Y, Ishii R, Yoshida R.
    J Plant Physiol; 2021 Jul; 262():153448. PubMed ID: 34058643
    [Abstract] [Full Text] [Related]

  • 15. The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrations.
    Nosek M, Kaczmarczyk A, Śliwa M, Jędrzejczyk R, Kornaś A, Supel P, Kaszycki P, Miszalski Z.
    J Plant Physiol; 2019 Sep; 240():153005. PubMed ID: 31271976
    [Abstract] [Full Text] [Related]

  • 16. Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden?
    Borland A, Elliott S, Patterson S, Taybi T, Cushman J, Pater B, Barnes J.
    J Exp Bot; 2006 Sep; 57(2):319-28. PubMed ID: 16356942
    [Abstract] [Full Text] [Related]

  • 17. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.
    Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC.
    J Exp Bot; 2007 Sep; 58(8):1957-67. PubMed ID: 17452753
    [Abstract] [Full Text] [Related]

  • 18. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress.
    Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI.
    Biochemistry (Mosc); 2006 Apr; 71(4):461-5. PubMed ID: 16615868
    [Abstract] [Full Text] [Related]

  • 19. [CO2-fixation metabolism in the halophytic species Mesembryanthemum crystallinum grown under different environmental conditions].
    Winter K.
    Planta; 1973 Mar; 114(1):75-85. PubMed ID: 24458666
    [Abstract] [Full Text] [Related]

  • 20. At the Edges of Photosynthetic Metabolic Plasticity-On the Rapidity and Extent of Changes Accompanying Salinity Stress-Induced CAM Photosynthesis Withdrawal.
    Nosek M, Gawrońska K, Rozpądek P, Sujkowska-Rybkowska M, Miszalski Z, Kornaś A.
    Int J Mol Sci; 2021 Aug 05; 22(16):. PubMed ID: 34445127
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.