These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Vesicle shapes from molecular dynamics simulations. Markvoort AJ, van Santen RA, Hilbers PA. J Phys Chem B; 2006 Nov 16; 110(45):22780-5. PubMed ID: 17092028 [Abstract] [Full Text] [Related]
3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K, Wada S, Liu H. Biomech Model Mechanobiol; 2014 Aug 16; 13(4):735-46. PubMed ID: 24104211 [Abstract] [Full Text] [Related]
5. Elastic energy of curvature-driven bump formation on red blood cell membrane. Waugh RE. Biophys J; 1996 Feb 16; 70(2):1027-35. PubMed ID: 8789121 [Abstract] [Full Text] [Related]
6. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties. Funkhouser CM, Solis FJ, Thornton K. J Chem Phys; 2014 Apr 14; 140(14):144908. PubMed ID: 24735319 [Abstract] [Full Text] [Related]
7. A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Bozic B, Svetina S. Eur Biophys J; 2004 Nov 14; 33(7):565-71. PubMed ID: 15095026 [Abstract] [Full Text] [Related]
8. Coupling of bending and stretching deformations in vesicle membranes. Lipowsky R. Adv Colloid Interface Sci; 2014 Jun 14; 208():14-24. PubMed ID: 24630342 [Abstract] [Full Text] [Related]
9. Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. Yin Y, Chen Y, Ni D, Shi H, Fan Q. J Biomech; 2005 Jul 14; 38(7):1433-40. PubMed ID: 15922754 [Abstract] [Full Text] [Related]
12. Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Bozic B, Kralj-Iglic V, Svetina S. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr 14; 73(4 Pt 1):041915. PubMed ID: 16711844 [Abstract] [Full Text] [Related]
13. Elasticity of polymer vesicles by osmotic pressure: an intermediate theory between fluid membranes and solid shells. Tu ZC, Ge LQ, Li JB, Ou-Yang ZC. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug 14; 72(2 Pt 1):021806. PubMed ID: 16196596 [Abstract] [Full Text] [Related]
14. Spectrin folding versus unfolding reactions and RBC membrane stiffness. Zhu Q, Asaro RJ. Biophys J; 2008 Apr 01; 94(7):2529-45. PubMed ID: 18065469 [Abstract] [Full Text] [Related]
15. Evidence and implications of inhomogeneity in tectorial membrane elasticity. Shoelson B, Dimitriadis EK, Cai H, Kachar B, Chadwick RS. Biophys J; 2004 Oct 01; 87(4):2768-77. PubMed ID: 15454468 [Abstract] [Full Text] [Related]
16. Membrane elasticity in giant vesicles with fluid phase coexistence. Baumgart T, Das S, Webb WW, Jenkins JT. Biophys J; 2005 Aug 01; 89(2):1067-80. PubMed ID: 15894634 [Abstract] [Full Text] [Related]
17. Free fluid vesicles are not exactly spherical. Linke GT, Lipowsky R, Gruhn T. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May 01; 71(5 Pt 1):051602. PubMed ID: 16089540 [Abstract] [Full Text] [Related]
18. Resting shape and spontaneous membrane curvature of red blood cells. Pozrikidis C. Math Med Biol; 2005 Mar 01; 22(1):34-52. PubMed ID: 15716299 [Abstract] [Full Text] [Related]
19. Predicting shapes of polymer-chain-anchored fluid vesicles. Wang J, Guo K, Qiu F, Zhang H, Yang Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr 01; 71(4 Pt 1):041908. PubMed ID: 15903702 [Abstract] [Full Text] [Related]
20. Gating-by-tilt of mechanically sensitive membrane channels. Turner MS, Sens P. Phys Rev Lett; 2004 Sep 10; 93(11):118103. PubMed ID: 15447384 [Abstract] [Full Text] [Related] Page: [Next] [New Search]