These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 15975054

  • 21. Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target.
    Inestrosa NC, Varela-Nallar L, Grabowski CP, Colombres M.
    IUBMB Life; 2007; 59(4-5):316-21. PubMed ID: 17505971
    [Abstract] [Full Text] [Related]

  • 22. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway.
    Killick R, Ribe EM, Al-Shawi R, Malik B, Hooper C, Fernandes C, Dobson R, Nolan PM, Lourdusamy A, Furney S, Lin K, Breen G, Wroe R, To AW, Leroy K, Causevic M, Usardi A, Robinson M, Noble W, Williamson R, Lunnon K, Kellie S, Reynolds CH, Bazenet C, Hodges A, Brion JP, Stephenson J, Simons JP, Lovestone S.
    Mol Psychiatry; 2014 Jan; 19(1):88-98. PubMed ID: 23164821
    [Abstract] [Full Text] [Related]

  • 23. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.
    Jean L, Thomas B, Tahiri-Alaoui A, Shaw M, Vaux DJ.
    PLoS One; 2007 Jul 25; 2(7):e652. PubMed ID: 17653279
    [Abstract] [Full Text] [Related]

  • 24. Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer's disease.
    Jin N, Zhu H, Liang X, Huang W, Xie Q, Xiao P, Ni J, Liu Q.
    Exp Neurol; 2017 Nov 25; 297():36-49. PubMed ID: 28711506
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway.
    Machhi J, Sinha A, Patel P, Kanhed AM, Upadhyay P, Tripathi A, Parikh ZS, Chruvattil R, Pillai PP, Gupta S, Patel K, Giridhar R, Yadav MR.
    Neurotox Res; 2016 May 25; 29(4):495-513. PubMed ID: 26797524
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Deciphering the AChE-binding mechanism with multifunctional tricyclic coumarin anti-Alzheimer's agents using biophysical and bioinformatics approaches and evaluation of their modulating effect on Amyloidogenic peptide assembly.
    Shaik JB, Kandrakonda YR, Kallubai M, Gajula NN, Dubey S, Aramati BMR, Subramanyam R, Amooru GD.
    Int J Biol Macromol; 2021 Dec 15; 193(Pt B):1409-1420. PubMed ID: 34740688
    [Abstract] [Full Text] [Related]

  • 30. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway.
    Reale M, Di Nicola M, Velluto L, D'Angelo C, Costantini E, Lahiri DK, Kamal MA, Yu QS, Greig NH.
    Curr Alzheimer Res; 2014 Dec 15; 11(6):608-22. PubMed ID: 24359497
    [Abstract] [Full Text] [Related]

  • 31. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.
    Alvarez A, Bronfman F, Pérez CA, Vicente M, Garrido J, Inestrosa NC.
    Neurosci Lett; 1995 Dec 01; 201(1):49-52. PubMed ID: 8830310
    [Abstract] [Full Text] [Related]

  • 32. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway.
    Ali MY, Jannat S, Edraki N, Das S, Chang WK, Kim HC, Park SK, Chang MS.
    Chem Biol Interact; 2019 Aug 25; 309():108707. PubMed ID: 31194956
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease.
    Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang S, Xu J, Yao Z, Gu H.
    Neurobiol Aging; 2015 May 25; 36(5):1792-807. PubMed ID: 25771396
    [Abstract] [Full Text] [Related]

  • 37. Amyloid-cholinesterase interactions. Implications for Alzheimer's disease.
    Inestrosa NC, Dinamarca MC, Alvarez A.
    FEBS J; 2008 Feb 25; 275(4):625-32. PubMed ID: 18205831
    [Abstract] [Full Text] [Related]

  • 38. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons.
    Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC.
    PLoS One; 2017 Feb 25; 12(1):e0168840. PubMed ID: 28060833
    [Abstract] [Full Text] [Related]

  • 39. In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692-->Gly) Alzheimer's disease.
    Walsh DM, Hartley DM, Condron MM, Selkoe DJ, Teplow DB.
    Biochem J; 2001 May 01; 355(Pt 3):869-77. PubMed ID: 11311152
    [Abstract] [Full Text] [Related]

  • 40. Amyloid-β Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity.
    Guivernau B, Bonet J, Valls-Comamala V, Bosch-Morató M, Godoy JA, Inestrosa NC, Perálvarez-Marín A, Fernández-Busquets X, Andreu D, Oliva B, Muñoz FJ.
    J Neurosci; 2016 Nov 16; 36(46):11693-11703. PubMed ID: 27852777
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.