These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 15984827
1. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions. Nikolic-Hughes I, O'brien PJ, Herschlag D. J Am Chem Soc; 2005 Jul 06; 127(26):9314-5. PubMed ID: 15984827 [Abstract] [Full Text] [Related]
2. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB, Raushel FM. Biochemistry; 1996 Aug 20; 35(33):10904-12. PubMed ID: 8718883 [Abstract] [Full Text] [Related]
3. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Catrina I, O'Brien PJ, Purcell J, Nikolic-Hughes I, Zalatan JG, Hengge AC, Herschlag D. J Am Chem Soc; 2007 May 02; 129(17):5760-5. PubMed ID: 17411045 [Abstract] [Full Text] [Related]
4. Structure and mechanism of alkaline phosphatase. Coleman JE. Annu Rev Biophys Biomol Struct; 1992 May 02; 21():441-83. PubMed ID: 1525473 [Abstract] [Full Text] [Related]
6. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli. Gudjónsdóttir K, Asgeirsson B. FEBS J; 2008 Jan 02; 275(1):117-27. PubMed ID: 18067583 [Abstract] [Full Text] [Related]
7. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B, Holtz KM, Kantrowitz ER. J Mol Biol; 2000 Jun 23; 299(5):1303-11. PubMed ID: 10873454 [Abstract] [Full Text] [Related]
8. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Brautigam CA, Sun S, Piccirilli JA, Steitz TA. Biochemistry; 1999 Jan 12; 38(2):696-704. PubMed ID: 9888810 [Abstract] [Full Text] [Related]
10. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J, Stieglitz KA, Kantrowitz ER. Biochemistry; 2005 Jun 14; 44(23):8378-86. PubMed ID: 15938627 [Abstract] [Full Text] [Related]
11. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ, Murphy JE, Kantrowitz ER. J Mol Biol; 2000 Dec 08; 304(4):645-56. PubMed ID: 11099386 [Abstract] [Full Text] [Related]
12. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates. O'Brien PJ, Herschlag D. Biochemistry; 2002 Mar 05; 41(9):3207-25. PubMed ID: 11863460 [Abstract] [Full Text] [Related]
15. Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism. López-Canut V, Roca M, Bertrán J, Moliner V, Tuñón I. J Am Chem Soc; 2010 May 26; 132(20):6955-63. PubMed ID: 20429564 [Abstract] [Full Text] [Related]
16. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. de Backer MM, McSweeney S, Lindley PF, Hough E. Acta Crystallogr D Biol Crystallogr; 2004 Sep 26; 60(Pt 9):1555-61. PubMed ID: 15333925 [Abstract] [Full Text] [Related]
17. Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase. López-Canut V, Martí S, Bertrán J, Moliner V, Tuñón I. J Phys Chem B; 2009 Jun 04; 113(22):7816-24. PubMed ID: 19425583 [Abstract] [Full Text] [Related]