These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 15992854

  • 1. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O, de Pablo J, Cortina JL, Ayora C.
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model.
    Choy KK, McKay G.
    Chemosphere; 2005 Aug; 60(8):1141-50. PubMed ID: 15993163
    [Abstract] [Full Text] [Related]

  • 8. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H, Mikkelsen PS, Ledin A.
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [Abstract] [Full Text] [Related]

  • 9. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I, Christl I, Leu C, Kretzschmar R.
    J Colloid Interface Sci; 2005 Feb 15; 282(2):270-82. PubMed ID: 15589531
    [Abstract] [Full Text] [Related]

  • 10. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.
    Rocha CG, Zaia DA, Alfaya RV, Alfaya AA.
    J Hazard Mater; 2009 Jul 15; 166(1):383-8. PubMed ID: 19131165
    [Abstract] [Full Text] [Related]

  • 11. Estimating sludge loadings to land based on trace metal sorption in soil: effect of dissolved organo-metallic complexes.
    Burton ED, Hawker DW, Redding MR.
    Water Res; 2003 Mar 15; 37(6):1394-400. PubMed ID: 12598202
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage.
    Chockalingam E, Subramanian S.
    Chemosphere; 2006 Feb 15; 62(5):699-708. PubMed ID: 16002121
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions.
    Mohapatra H, Gupta R.
    Bioresour Technol; 2005 Aug 15; 96(12):1387-98. PubMed ID: 15792587
    [Abstract] [Full Text] [Related]

  • 17. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E, Cetin S, Yanik BH.
    J Hazard Mater; 2006 Jul 31; 135(1-3):193-9. PubMed ID: 16368188
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M, Beattie DA, Smith E, Skinner WM, Singh B.
    J Colloid Interface Sci; 2008 Jun 15; 322(2):399-413. PubMed ID: 18423478
    [Abstract] [Full Text] [Related]

  • 20. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal.
    Vázquez G, Calvo M, Sonia Freire M, González-Alvarez J, Antorrena G.
    J Hazard Mater; 2009 Dec 30; 172(2-3):1402-14. PubMed ID: 19716655
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.