These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 15992926

  • 1. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.
    Zhou DM, Deng CF, Alshawabkeh AN, Cang L.
    Environ Int; 2005 Aug; 31(6):885-90. PubMed ID: 15992926
    [Abstract] [Full Text] [Related]

  • 2. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.
    Zhou DM, Deng CF, Cang L.
    Chemosphere; 2004 Jul; 56(3):265-73. PubMed ID: 15172599
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously.
    Zhou DM, Zorn R, Kurt C.
    J Environ Sci (China); 2003 May; 15(3):396-400. PubMed ID: 12938993
    [Abstract] [Full Text] [Related]

  • 5. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte.
    Zhou DM, Alshawabkeh AN, Deng CF, Cang L, Si YB.
    J Environ Sci (China); 2004 May; 16(4):529-32. PubMed ID: 15495949
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Accelerated weathering of biosolid-amended copper mine tailings.
    Pond AP, White SA, Milczarek M, Thompson TL.
    J Environ Qual; 2005 May; 34(4):1293-301. PubMed ID: 15998851
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Electrodialytic remediation of copper mine tailings.
    Hansen HK, Rojo A, Ottosen LM.
    J Hazard Mater; 2005 Jan 31; 117(2-3):179-83. PubMed ID: 15629576
    [Abstract] [Full Text] [Related]

  • 10. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions.
    Yang JS, Lee JY, Baek K, Kwon TS, Choi J.
    J Hazard Mater; 2009 Nov 15; 171(1-3):443-51. PubMed ID: 19577840
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Estimation of temporal changes in oxidation rates of sulphides in copper mine tailings at Laver, Northern Sweden.
    Alakangas L, Ohlander B, Lundberg A.
    Sci Total Environ; 2010 Feb 15; 408(6):1386-92. PubMed ID: 19939438
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings.
    Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE.
    Environ Pollut; 2007 May 15; 147(2):374-80. PubMed ID: 16764975
    [Abstract] [Full Text] [Related]

  • 18. Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil.
    Voglar D, Lestan D.
    J Hazard Mater; 2010 Aug 15; 180(1-3):152-7. PubMed ID: 20430521
    [Abstract] [Full Text] [Related]

  • 19. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M, Hwang JS, Choi SI.
    Chemosphere; 2007 Jan 15; 66(1):8-17. PubMed ID: 16831457
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.