These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
459 related items for PubMed ID: 15996108
1. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Pokorny A, Almeida PF. Biochemistry; 2005 Jul 12; 44(27):9538-44. PubMed ID: 15996108 [Abstract] [Full Text] [Related]
2. Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. Pokorny A, Yandek LE, Elegbede AI, Hinderliter A, Almeida PF. Biophys J; 2006 Sep 15; 91(6):2184-97. PubMed ID: 16798807 [Abstract] [Full Text] [Related]
3. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Pokorny A, Almeida PF. Biochemistry; 2004 Jul 13; 43(27):8846-57. PubMed ID: 15236593 [Abstract] [Full Text] [Related]
4. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ, Seaton P, Pokorny A. Biochim Biophys Acta; 2016 May 13; 1858(5):988-94. PubMed ID: 26514602 [Abstract] [Full Text] [Related]
5. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM, Tamm LK. Biophys J; 2004 May 13; 86(5):2965-79. PubMed ID: 15111412 [Abstract] [Full Text] [Related]
6. Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. Pokorny A, Birkbeck TH, Almeida PF. Biochemistry; 2002 Sep 10; 41(36):11044-56. PubMed ID: 12206677 [Abstract] [Full Text] [Related]
7. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Geisse NA, Cover TL, Henderson RM, Edwardson JM. Biochem J; 2004 Aug 01; 381(Pt 3):911-7. PubMed ID: 15128269 [Abstract] [Full Text] [Related]
8. Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Won A, Ruscito A, Ianoul A. Biochim Biophys Acta; 2012 Dec 01; 1818(12):3072-80. PubMed ID: 22885172 [Abstract] [Full Text] [Related]
9. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Staneva G, Seigneuret M, Conjeaud H, Puff N, Angelova MI. Langmuir; 2011 Dec 20; 27(24):15074-82. PubMed ID: 22026409 [Abstract] [Full Text] [Related]
10. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE, Smith DA, Hooper NM. Mol Membr Biol; 2007 Dec 20; 24(3):233-42. PubMed ID: 17520480 [Abstract] [Full Text] [Related]
11. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Samsonov AV, Mihalyov I, Cohen FS. Biophys J; 2001 Sep 20; 81(3):1486-500. PubMed ID: 11509362 [Abstract] [Full Text] [Related]
12. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K, Staudegger E, Prenner EJ, Lewis RN, Kriechbaum M, Degovics G, McElhaney RN. Biochemistry; 1999 Dec 14; 38(50):16514-28. PubMed ID: 10600113 [Abstract] [Full Text] [Related]
13. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Róg T, Vattulainen I. Chem Phys Lipids; 2014 Dec 14; 184():82-104. PubMed ID: 25444976 [Abstract] [Full Text] [Related]
14. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Kahya N. Chem Phys Lipids; 2006 Jun 14; 141(1-2):158-68. PubMed ID: 16696961 [Abstract] [Full Text] [Related]
15. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Lin Q, London E. Biophys J; 2015 May 05; 108(9):2212-22. PubMed ID: 25954879 [Abstract] [Full Text] [Related]
16. Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? McHenry AJ, Sciacca MF, Brender JR, Ramamoorthy A. Biochim Biophys Acta; 2012 Dec 05; 1818(12):3019-24. PubMed ID: 22885355 [Abstract] [Full Text] [Related]
17. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A, Draus J, Subczynski WK. Cell Mol Biol Lett; 2003 Dec 05; 8(1):147-59. PubMed ID: 12655369 [Abstract] [Full Text] [Related]
18. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study. Periasamy N, Winter R. Biochim Biophys Acta; 2006 Mar 05; 1764(3):398-404. PubMed ID: 16330267 [Abstract] [Full Text] [Related]
19. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. Sepcić K, Berne S, Rebolj K, Batista U, Plemenitas A, Sentjurc M, Macek P. FEBS Lett; 2004 Sep 24; 575(1-3):81-5. PubMed ID: 15388337 [Abstract] [Full Text] [Related]
20. Lipid rafts reconstituted in model membranes. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Biophys J; 2001 Mar 24; 80(3):1417-28. PubMed ID: 11222302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]