These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
70 related items for PubMed ID: 15998253
1. The transfer of reductive energy and pace of proteome turnover: a theory of integrated catabolic control. Lockwood TD. Antioxid Redox Signal; 2005; 7(7-8):982-98. PubMed ID: 15998253 [Abstract] [Full Text] [Related]
2. Cys-His proteases are among the wired proteins of the cell. Lockwood TD. Arch Biochem Biophys; 2004 Dec 01; 432(1):12-24. PubMed ID: 15519292 [Abstract] [Full Text] [Related]
3. Redox pacing of proteome turnover: influences of glutathione and ketonemia. Lockwood TD. Arch Biochem Biophys; 2003 Sep 15; 417(2):183-93. PubMed ID: 12941300 [Abstract] [Full Text] [Related]
4. Redox control of protein degradation. Lockwood TD. Antioxid Redox Signal; 2000 Sep 15; 2(4):851-78. PubMed ID: 11213489 [Abstract] [Full Text] [Related]
5. Is dihydrolipoic acid among the reductive activators of parasite CysHis proteases? Lockwood TD. Exp Parasitol; 2008 Apr 15; 118(4):604-13. PubMed ID: 18068706 [Abstract] [Full Text] [Related]
6. Cathepsin B responsiveness to glutathione and lipoic acid redox. Lockwood TD. Antioxid Redox Signal; 2002 Aug 15; 4(4):681-91. PubMed ID: 12230881 [Abstract] [Full Text] [Related]
7. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Lockwood TD. Metallomics; 2013 Feb 15; 5(2):110-24. PubMed ID: 23302864 [Abstract] [Full Text] [Related]
8. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM, Kirlin WG. FASEB J; 2004 Aug 15; 18(11):1246-8. PubMed ID: 15180957 [Abstract] [Full Text] [Related]
9. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R. Phytochemistry; 2011 Jul 15; 72(10):1162-72. PubMed ID: 21295800 [Abstract] [Full Text] [Related]
10. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Bykova NV, Rampitsch C. Proteomics; 2013 Feb 15; 13(3-4):579-96. PubMed ID: 23197359 [Abstract] [Full Text] [Related]
11. The multiple functions of coenzyme Q. Nohl H, Kozlov AV, Staniek K, Gille L. Bioorg Chem; 2001 Feb 15; 29(1):1-13. PubMed ID: 11300690 [Abstract] [Full Text] [Related]
12. How a redox-innocent metal promotes the formal reductive elimination of biphenyl using redox-active ligands. Ashley DC, Baik MH. Chemistry; 2015 Mar 09; 21(11):4308-14. PubMed ID: 25653096 [Abstract] [Full Text] [Related]
13. Concepts and approaches towards understanding the cellular redox proteome. Ströher E, Dietz KJ. Plant Biol (Stuttg); 2006 Jul 09; 8(4):407-18. PubMed ID: 16906481 [Abstract] [Full Text] [Related]
14. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V, Holden MJ, Vilker VL. Biochemistry; 2007 Nov 13; 46(45):13235-44. PubMed ID: 17941648 [Abstract] [Full Text] [Related]
15. The key role of the redox status in regulation of metabolism in photosynthesizing organisms. Kornas A, Kuźniak E, Slesak I, Miszalski Z. Acta Biochim Pol; 2010 Nov 13; 57(2):143-51. PubMed ID: 20559571 [Abstract] [Full Text] [Related]
16. Protein-thiol oxidation, from single proteins to proteome-wide analyses. Le Moan N, Tacnet F, Toledano MB. Methods Mol Biol; 2008 Nov 13; 476():181-98. PubMed ID: 19157017 [Abstract] [Full Text] [Related]
17. Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R. Proteomics; 2011 Mar 13; 11(5):865-82. PubMed ID: 21280218 [Abstract] [Full Text] [Related]
18. Reductive half-reaction of thioredoxin reductase from Escherichia coli. Lennon BW, Williams CH. Biochemistry; 1997 Aug 05; 36(31):9464-77. PubMed ID: 9235991 [Abstract] [Full Text] [Related]
19. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Anal Chem; 2013 Apr 02; 85(7):3774-80. PubMed ID: 23438843 [Abstract] [Full Text] [Related]
20. The Redox Code. Jones DP, Sies H. Antioxid Redox Signal; 2015 Sep 20; 23(9):734-46. PubMed ID: 25891126 [Abstract] [Full Text] [Related] Page: [Next] [New Search]