These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 16003894

  • 1. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances.
    Johnson MD, Otto KJ, Kipke DR.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):160-5. PubMed ID: 16003894
    [Abstract] [Full Text] [Related]

  • 2. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ, Johnson MD, Kipke DR.
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR.
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [Abstract] [Full Text] [Related]

  • 5. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH, Buhl DL, Sirota AM, Buzsaki G, Wise KD.
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [Abstract] [Full Text] [Related]

  • 6. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR, Tresco PA.
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP, Rajdev P, Ellison C, Irazoqui PP.
    Brain Res; 2009 Jul 28; 1282():183-200. PubMed ID: 19486899
    [Abstract] [Full Text] [Related]

  • 10. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY.
    J Neurosci Methods; 2009 Aug 30; 182(1):6-16. PubMed ID: 19467262
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT.
    IEEE Trans Biomed Eng; 2004 Jun 30; 51(6):881-9. PubMed ID: 15188854
    [Abstract] [Full Text] [Related]

  • 15. Single-unit neural recording with active microelectrode arrays.
    Bai Q, Wise KD.
    IEEE Trans Biomed Eng; 2001 Aug 30; 48(8):911-20. PubMed ID: 11499528
    [Abstract] [Full Text] [Related]

  • 16. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED, Leung J, Wood S, Nguyen CV.
    Nanotechnology; 2010 Mar 26; 21(12):125101. PubMed ID: 20182008
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV.
    IEEE Trans Biomed Eng; 2007 Nov 26; 54(11):2037-50. PubMed ID: 18018699
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.