These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 16005290
1. Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC. Curr Biol; 2005 Jul 12; 15(13):1185-95. PubMed ID: 16005290 [Abstract] [Full Text] [Related]
9. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, Kafatos FC. Cell Microbiol; 2004 Jul 12; 6(7):671-85. PubMed ID: 15186403 [Abstract] [Full Text] [Related]
10. A possible key molecule for the invasion of the Plasmodium berghei ookinetes into the midgut epithelium of Anopheles gambiae mosquitoes. Toubarro DN, Ralha D, Carvalho S, Tomás AM, Almeida AP. In Vivo; 2010 Jul 12; 24(3):271-80. PubMed ID: 20554998 [Abstract] [Full Text] [Related]
11. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA. Immunity; 2006 Oct 12; 25(4):677-85. PubMed ID: 17045818 [Abstract] [Full Text] [Related]
12. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Pinto SB, Kafatos FC, Michel K. Cell Microbiol; 2008 Apr 12; 10(4):891-8. PubMed ID: 18005239 [Abstract] [Full Text] [Related]
13. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. Dimopoulos G, Seeley D, Wolf A, Kafatos FC. EMBO J; 1998 Nov 02; 17(21):6115-23. PubMed ID: 9799221 [Abstract] [Full Text] [Related]
14. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Danielli A, Barillas-Mury C, Kumar S, Kafatos FC, Loukeris TG. Cell Microbiol; 2005 Feb 02; 7(2):181-90. PubMed ID: 15659062 [Abstract] [Full Text] [Related]
15. Mosquito immunity against Plasmodium. Michel K, Kafatos FC. Insect Biochem Mol Biol; 2005 Jul 02; 35(7):677-89. PubMed ID: 15894185 [Abstract] [Full Text] [Related]
16. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. Warr E, Das S, Dong Y, Dimopoulos G. Insect Mol Biol; 2008 Feb 02; 17(1):39-51. PubMed ID: 18237283 [Abstract] [Full Text] [Related]
17. The complex interplay between mosquito positive and negative regulators of Plasmodium development. Vlachou D, Kafatos FC. Curr Opin Microbiol; 2005 Aug 02; 8(4):415-21. PubMed ID: 15996894 [Abstract] [Full Text] [Related]
18. CTRP is essential for mosquito infection by malaria ookinetes. Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE. EMBO J; 1999 Nov 15; 18(22):6221-7. PubMed ID: 10562534 [Abstract] [Full Text] [Related]
19. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G. PLoS Pathog; 2006 Jun 15; 2(6):e52. PubMed ID: 16789837 [Abstract] [Full Text] [Related]
20. Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut. Shiao SH, Whitten MM, Zachary D, Hoffmann JA, Levashina EA. PLoS Pathog; 2006 Dec 15; 2(12):e133. PubMed ID: 17196037 [Abstract] [Full Text] [Related] Page: [Next] [New Search]