These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
477 related items for PubMed ID: 16006525
1. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD. Proc Natl Acad Sci U S A; 2005 Jul 19; 102(29):10070-5. PubMed ID: 16006525 [Abstract] [Full Text] [Related]
2. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P. Proc Natl Acad Sci U S A; 2004 Feb 17; 101(7):2040-5. PubMed ID: 14764894 [Abstract] [Full Text] [Related]
3. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Proc Natl Acad Sci U S A; 2002 Sep 03; 99(18):11908-13. PubMed ID: 12193649 [Abstract] [Full Text] [Related]
4. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD, Hannink M. Mol Cell Biol; 2003 Nov 03; 23(22):8137-51. PubMed ID: 14585973 [Abstract] [Full Text] [Related]
5. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Hong F, Freeman ML, Liebler DC. Chem Res Toxicol; 2005 Dec 03; 18(12):1917-26. PubMed ID: 16359182 [Abstract] [Full Text] [Related]
6. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Mol Cell Biol; 2004 Dec 03; 24(24):10941-53. PubMed ID: 15572695 [Abstract] [Full Text] [Related]
7. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. Hong F, Sekhar KR, Freeman ML, Liebler DC. J Biol Chem; 2005 Sep 09; 280(36):31768-75. PubMed ID: 15985429 [Abstract] [Full Text] [Related]
8. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Itoh K, Tong KI, Yamamoto M. Free Radic Biol Med; 2004 May 15; 36(10):1208-13. PubMed ID: 15110385 [Abstract] [Full Text] [Related]
9. Modification of keap1 cysteine residues by sulforaphane. Hu C, Eggler AL, Mesecar AD, van Breemen RB. Chem Res Toxicol; 2011 Apr 18; 24(4):515-21. PubMed ID: 21391649 [Abstract] [Full Text] [Related]
10. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M. Proc Natl Acad Sci U S A; 2004 Feb 17; 101(7):2046-51. PubMed ID: 14764898 [Abstract] [Full Text] [Related]
11. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Mol Cell Biol; 2004 Aug 17; 24(16):7130-9. PubMed ID: 15282312 [Abstract] [Full Text] [Related]
12. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K, Mimura J, Yamamoto M. Antioxid Redox Signal; 2010 Dec 01; 13(11):1665-78. PubMed ID: 20446768 [Abstract] [Full Text] [Related]
13. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, Warabi E, Noguchi N, Itoh K, Yamamoto M. J Biol Chem; 2005 Jul 22; 280(29):27244-50. PubMed ID: 15917255 [Abstract] [Full Text] [Related]
14. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. McMahon M, Itoh K, Yamamoto M, Hayes JD. J Biol Chem; 2003 Jun 13; 278(24):21592-600. PubMed ID: 12682069 [Abstract] [Full Text] [Related]
15. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. Arch Biochem Biophys; 2005 Jan 15; 433(2):342-50. PubMed ID: 15581590 [Abstract] [Full Text] [Related]
16. Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent. Eggler AL, Luo Y, van Breemen RB, Mesecar AD. Chem Res Toxicol; 2007 Dec 15; 20(12):1878-84. PubMed ID: 17935299 [Abstract] [Full Text] [Related]
17. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Ohnuma T, Nakayama S, Anan E, Nishiyama T, Ogura K, Hiratsuka A. Toxicol Appl Pharmacol; 2010 Apr 01; 244(1):27-36. PubMed ID: 20026152 [Abstract] [Full Text] [Related]
18. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Holland R, Fishbein JC. Antioxid Redox Signal; 2010 Dec 01; 13(11):1749-61. PubMed ID: 20486763 [Abstract] [Full Text] [Related]
19. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Genes Dev; 1999 Jan 01; 13(1):76-86. PubMed ID: 9887101 [Abstract] [Full Text] [Related]
20. The GI-GPx gene is a target for Nrf2. Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohé R. Mol Cell Biol; 2005 Jun 01; 25(12):4914-23. PubMed ID: 15923610 [Abstract] [Full Text] [Related] Page: [Next] [New Search]