These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
465 related items for PubMed ID: 16008431
1. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems. Neimark AV, Vishnyakov A. J Chem Phys; 2005 Jun 15; 122(23):234108. PubMed ID: 16008431 [Abstract] [Full Text] [Related]
2. Multicomponent gauge cell method. Vishnyakov A, Neimark AV. J Chem Phys; 2009 Jun 14; 130(22):224103. PubMed ID: 19530758 [Abstract] [Full Text] [Related]
3. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles. Puibasset J. J Phys Chem B; 2005 Apr 28; 109(16):8185-94. PubMed ID: 16851957 [Abstract] [Full Text] [Related]
4. Phase transitions and criticality in small systems: vapor-liquid transition in nanoscale spherical cavities. Neimark AV, Vishnyakov A. J Phys Chem B; 2006 May 18; 110(19):9403-12. PubMed ID: 16686483 [Abstract] [Full Text] [Related]
5. Grand potential, helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method. Puibasset J. J Phys Chem B; 2005 Jan 13; 109(1):480-7. PubMed ID: 16851039 [Abstract] [Full Text] [Related]
6. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. Hansen N, Jakobtorweihen S, Keil FJ. J Chem Phys; 2005 Apr 22; 122(16):164705. PubMed ID: 15945697 [Abstract] [Full Text] [Related]
7. Phase coexistence in heterogeneous porous media: a new extension to Gibbs ensemble Monte Carlo simulation method. Puibasset J. J Chem Phys; 2005 Apr 01; 122(13):134710. PubMed ID: 15847492 [Abstract] [Full Text] [Related]
8. Structure of Lennard-Jones fluids confined in square nanoscale channels from density functional theory. Yang X, Ding J. J Chem Phys; 2004 Oct 15; 121(15):7449-56. PubMed ID: 15473819 [Abstract] [Full Text] [Related]
9. Calculation of chemical potentials of chain molecules by the incremental gauge cell method. Rasmussen CJ, Vishnyakov A, Neimark AV. J Chem Phys; 2011 Dec 07; 135(21):214109. PubMed ID: 22149781 [Abstract] [Full Text] [Related]
10. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials. Monson PA. J Chem Phys; 2008 Feb 28; 128(8):084701. PubMed ID: 18315066 [Abstract] [Full Text] [Related]
14. Adsorption of Fluids in Pores Formed between Two Hard Cylinders. Bryk P, Lajtar L, Pizio O, Sokolowska Z, Sokolowski S. J Colloid Interface Sci; 2000 Sep 15; 229(2):526-533. PubMed ID: 10985831 [Abstract] [Full Text] [Related]
18. Finite-size effects in the microscopic structure of a hard-sphere fluid in a narrow cylindrical pore. Román FL, White JA, González A, Velasco S. J Chem Phys; 2006 Apr 21; 124(15):154708. PubMed ID: 16674252 [Abstract] [Full Text] [Related]
19. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. Do DD, Do HD. J Chem Phys; 2005 Aug 22; 123(8):084701. PubMed ID: 16164315 [Abstract] [Full Text] [Related]
20. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects. Vörtler HL, Schäfer K, Smith WR. J Phys Chem B; 2008 Apr 17; 112(15):4656-61. PubMed ID: 18358019 [Abstract] [Full Text] [Related] Page: [Next] [New Search]