These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 16009270

  • 1. TCRalphabeta repertoire diversity of human naturally occurring CD4+CD25+ regulatory T cells.
    Fujishima M, Hirokawa M, Fujishima N, Sawada K.
    Immunol Lett; 2005 Jul 15; 99(2):193-7. PubMed ID: 16009270
    [Abstract] [Full Text] [Related]

  • 2. Progressive derangement of the T cell compartment in a case of Evans syndrome.
    Giovannetti A, Pierdominici M, Esposito A, Cagliuso M, Stifano G, Giammarioli AM, Maselli A, Malorni W, Salsano F, Aiuti F.
    Int Arch Allergy Immunol; 2008 Jul 15; 145(3):258-67. PubMed ID: 17921676
    [Abstract] [Full Text] [Related]

  • 3. Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells.
    Iellem A, Colantonio L, D'Ambrosio D.
    Eur J Immunol; 2003 Jun 15; 33(6):1488-96. PubMed ID: 12778466
    [Abstract] [Full Text] [Related]

  • 4. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets.
    Pyzik M, Piccirillo CA.
    J Leukoc Biol; 2007 Aug 15; 82(2):335-46. PubMed ID: 17475784
    [Abstract] [Full Text] [Related]

  • 5. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells.
    Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L.
    Immunity; 2006 Aug 15; 25(2):249-59. PubMed ID: 16879995
    [Abstract] [Full Text] [Related]

  • 6. Identification of a CD4+CD25+ T cell subset committed in vivo to suppress antigen-specific T cell responses without additional stimulation.
    Nolte-'t Hoen EN, Wagenaar-Hilbers JP, Boot EP, Lin CH, Arkesteijn GJ, van Eden W, Taams LS, Wauben MH.
    Eur J Immunol; 2004 Nov 15; 34(11):3016-27. PubMed ID: 15376196
    [Abstract] [Full Text] [Related]

  • 7. In-vitro generation and characterisation of murine CD4+CD25+ regulatory T cells with indirect allospecificity.
    Tsang J, Jiang S, Tanriver Y, Leung E, Lombardi G, Lechler RI.
    Int Immunopharmacol; 2006 Dec 20; 6(13-14):1883-8. PubMed ID: 17161341
    [Abstract] [Full Text] [Related]

  • 8. Characterization of CD8+ T cell repertoire in identical twins discordant and concordant for multiple sclerosis.
    Somma P, Ristori G, Battistini L, Cannoni S, Borsellino G, Diamantini A, Salvetti M, Sorrentino R, Fiorillo MT.
    J Leukoc Biol; 2007 Mar 20; 81(3):696-710. PubMed ID: 17110420
    [Abstract] [Full Text] [Related]

  • 9. A peripheral circulating compartment of natural naive CD4 Tregs.
    Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M.
    J Clin Invest; 2005 Jul 20; 115(7):1953-62. PubMed ID: 16007258
    [Abstract] [Full Text] [Related]

  • 10. Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells.
    Baecher-Allan C, Wolf E, Hafler DA.
    Clin Immunol; 2005 Apr 20; 115(1):10-8. PubMed ID: 15870015
    [Abstract] [Full Text] [Related]

  • 11. T-cell receptor beta-chain usage in directly activated alloreactive CD4+ T cells: unrestricted Vbeta gene usage with CDR3 size limitations.
    Zhai Y, Kupiec-Weglinski JW.
    Transplantation; 2003 Feb 27; 75(4):514-21. PubMed ID: 12605120
    [Abstract] [Full Text] [Related]

  • 12. Human CD4+CD25+ regulatory T cells.
    Baecher-Allan C, Viglietta V, Hafler DA.
    Semin Immunol; 2004 Apr 27; 16(2):89-98. PubMed ID: 15036232
    [Abstract] [Full Text] [Related]

  • 13. Definition of target antigens for naturally occurring CD4(+) CD25(+) regulatory T cells.
    Nishikawa H, Kato T, Tawara I, Saito K, Ikeda H, Kuribayashi K, Allen PM, Schreiber RD, Sakaguchi S, Old LJ, Shiku H.
    J Exp Med; 2005 Mar 07; 201(5):681-6. PubMed ID: 15753203
    [Abstract] [Full Text] [Related]

  • 14. Regulatory activity of human CD4 CD25 T cells depends on allergen concentration, type of allergen and atopy status of the donor.
    Bellinghausen I, König B, Böttcher I, Knop J, Saloga J.
    Immunology; 2005 Sep 07; 116(1):103-11. PubMed ID: 16108822
    [Abstract] [Full Text] [Related]

  • 15. Development of mouse CD4(+)CD25(+)Foxp3(+) regulatory T cells in xenogeneic pig thymic grafts.
    Zhang B, Zhang A, Qu Y, Liu J, Niu Z, Zhao Y.
    Transpl Immunol; 2009 Jan 07; 20(3):180-5. PubMed ID: 18845256
    [Abstract] [Full Text] [Related]

  • 16. Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4(+) subset and oligoclonal in the CD8(+) subset.
    Fozza C, Contini S, Galleu A, Simula MP, Virdis P, Bonfigli S, Longinotti M.
    Exp Hematol; 2009 Aug 07; 37(8):947-55. PubMed ID: 19409953
    [Abstract] [Full Text] [Related]

  • 17. Characterization of mouse CD4 T cell subsets defined by expression of KLRG1.
    Beyersdorf N, Ding X, Tietze JK, Hanke T.
    Eur J Immunol; 2007 Dec 07; 37(12):3445-54. PubMed ID: 18034419
    [Abstract] [Full Text] [Related]

  • 18. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH, Turner NL, Mayrhofer G.
    J Leukoc Biol; 2008 Nov 07; 84(5):1287-97. PubMed ID: 18682578
    [Abstract] [Full Text] [Related]

  • 19. Induction of eye-derived tolerance does not depend on naturally occurring CD4+CD25+ T regulatory cells.
    Keino H, Takeuchi M, Kezuka T, Hattori T, Usui M, Taguchi O, Streilein JW, Stein-Streilein J.
    Invest Ophthalmol Vis Sci; 2006 Mar 07; 47(3):1047-55. PubMed ID: 16505040
    [Abstract] [Full Text] [Related]

  • 20. Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions.
    Okui T, Ito H, Honda T, Amanuma R, Yoshie H, Yamazaki K.
    Oral Microbiol Immunol; 2008 Feb 07; 23(1):49-54. PubMed ID: 18173798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.