These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 16009380

  • 1. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P, Pavarino LF, Taccardi B.
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [Abstract] [Full Text] [Related]

  • 2. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P, Pavarino LF, Taccardi B.
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Cardiac propagation simulation.
    Pollard AE, Hooke N, Henriquez CS.
    Crit Rev Biomed Eng; 1992 Nov; 20(3-4):171-210. PubMed ID: 1478091
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
    Colli-Franzone P, Pavarino LF, Scacchi S.
    Math Biosci; 2011 Apr; 230(2):96-114. PubMed ID: 21329705
    [Abstract] [Full Text] [Related]

  • 7. Modeling ventricular repolarization: effects of transmural and apex-to-base heterogeneities in action potential durations.
    Colli Franzone P, Pavarino LF, Scacchi S, Taccardi B.
    Math Biosci; 2008 Apr; 214(1-2):140-52. PubMed ID: 18621065
    [Abstract] [Full Text] [Related]

  • 8. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC, Dubé B, Potse M, Gulrajani RM, Leon LJ.
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [Abstract] [Full Text] [Related]

  • 9. A reliability analysis of cardiac repolarization time markers.
    Scacchi S, Franzone PC, Pavarino LF, Taccardi B.
    Math Biosci; 2009 Jun; 219(2):113-28. PubMed ID: 19328815
    [Abstract] [Full Text] [Related]

  • 10. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.
    Wei D, Okazaki O, Harumi K, Harasawa E, Hosaka H.
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834
    [Abstract] [Full Text] [Related]

  • 11. Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials.
    Colli-Franzone P, Guerri L, Taccardi B.
    Math Biosci; 2004 Apr; 188():191-205. PubMed ID: 14766102
    [Abstract] [Full Text] [Related]

  • 12. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC, Horácek BM.
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [Abstract] [Full Text] [Related]

  • 13. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S, Röder G, Bär M.
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [Abstract] [Full Text] [Related]

  • 14. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q, Eason JC, Claydon FJ.
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [Abstract] [Full Text] [Related]

  • 15. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field.
    Franzone PC, Guerri L, Tentoni S.
    Math Biosci; 1990 Oct; 101(2):155-235. PubMed ID: 2134484
    [Abstract] [Full Text] [Related]

  • 16. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J, Nielsen BF, Mardal KA, Cai X, Lines GT, Tveito A.
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [Abstract] [Full Text] [Related]

  • 17. Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
    Henriquez CS, Plonsey R.
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):861-75. PubMed ID: 2227973
    [Abstract] [Full Text] [Related]

  • 18. Cardiac excitation mechanisms, wavefront dynamics and strength-interval curves predicted by 3D orthotropic bidomain simulations.
    Colli Franzone P, Pavarino LF, Scacchi S.
    Math Biosci; 2012 Jan; 235(1):66-84. PubMed ID: 22067511
    [Abstract] [Full Text] [Related]

  • 19. The effect of cardiac electric anisotropy on epicardial potential fields during ventricular repolarization.
    Spaggiari S, Baruffi S, Macchi E, Traversa M, Arisi G, Taccardi B.
    Jpn Heart J; 1986 Nov; 27 Suppl 1():217-23. PubMed ID: 3820587
    [Abstract] [Full Text] [Related]

  • 20. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP.
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.