These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 16011355

  • 1. Orientation control of fluorescence resonance energy transfer using DNA as a helical scaffold.
    Lewis FD, Zhang L, Zuo X.
    J Am Chem Soc; 2005 Jul 20; 127(28):10002-3. PubMed ID: 16011355
    [Abstract] [Full Text] [Related]

  • 2. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template.
    Wang L, Gaigalas AK, Blasic J, Holden MJ, Gallagher DT, Pires R.
    Biopolymers; 2003 Jul 20; 72(6):401-12. PubMed ID: 14587062
    [Abstract] [Full Text] [Related]

  • 3. Determination of DNA helical handedness by fluorescence resonance energy transfer.
    Jares-Erijman EA, Jovin TM.
    J Mol Biol; 1996 Apr 05; 257(3):597-617. PubMed ID: 8648627
    [Abstract] [Full Text] [Related]

  • 4. Characterization of nucleobase analogue FRET acceptor tCnitro.
    Preus S, Börjesson K, Kilså K, Albinsson B, Wilhelmsson LM.
    J Phys Chem B; 2010 Jan 21; 114(2):1050-6. PubMed ID: 20039634
    [Abstract] [Full Text] [Related]

  • 5. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems.
    Börjesson K, Preus S, El-Sagheer AH, Brown T, Albinsson B, Wilhelmsson LM.
    J Am Chem Soc; 2009 Apr 01; 131(12):4288-93. PubMed ID: 19317504
    [Abstract] [Full Text] [Related]

  • 6. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S, Gurunathan K, Levitus M.
    J Phys Chem B; 2009 Jun 04; 113(22):7861-6. PubMed ID: 19473039
    [Abstract] [Full Text] [Related]

  • 7. A semiempirical approach to the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer pathways in phycobilisomes.
    Matamala AR, Almonacid DE, Figueroa MF, Martínez-Oyanedel J, Bunster MC.
    J Comput Chem; 2007 May 04; 28(7):1200-7. PubMed ID: 17299727
    [Abstract] [Full Text] [Related]

  • 8. Two-step FRET as a structural tool.
    Watrob HM, Pan CP, Barkley MD.
    J Am Chem Soc; 2003 Jun 18; 125(24):7336-43. PubMed ID: 12797808
    [Abstract] [Full Text] [Related]

  • 9. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer.
    Sabanayagam CR, Eid JS, Meller A.
    J Chem Phys; 2005 Feb 08; 122(6):061103. PubMed ID: 15740360
    [Abstract] [Full Text] [Related]

  • 10. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory.
    von Feilitzsch T, Tuma J, Neubauer H, Verdier L, Haselsberger R, Feick R, Gurzadyan G, Voityuk AA, Griesinger C, Michel-Beyerle ME.
    J Phys Chem B; 2008 Jan 24; 112(3):973-89. PubMed ID: 18163608
    [Abstract] [Full Text] [Related]

  • 11. FRET templated by G-quadruplex DNA: a specific ternary interaction using an original pair of donor/acceptor partners.
    Allain C, Monchaud D, Teulade-Fichou MP.
    J Am Chem Soc; 2006 Sep 13; 128(36):11890-3. PubMed ID: 16953629
    [Abstract] [Full Text] [Related]

  • 12. Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending.
    Dragan AI, Privalov PL.
    Methods Enzymol; 2008 Sep 13; 450():185-99. PubMed ID: 19152861
    [Abstract] [Full Text] [Related]

  • 13. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment.
    Furey WS, Joyce CM, Osborne MA, Klenerman D, Peliska JA, Balasubramanian S.
    Biochemistry; 1998 Mar 03; 37(9):2979-90. PubMed ID: 9485450
    [Abstract] [Full Text] [Related]

  • 14. HU binding to bent DNA: a fluorescence resonance energy transfer and anisotropy study.
    Wojtuszewski K, Mukerji I.
    Biochemistry; 2003 Mar 18; 42(10):3096-104. PubMed ID: 12627977
    [Abstract] [Full Text] [Related]

  • 15. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A, Ritschel T, Kumke MU.
    Bioconjug Chem; 2011 Dec 21; 22(12):2546-57. PubMed ID: 22073970
    [Abstract] [Full Text] [Related]

  • 16. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates.
    Massey M, Algar WR, Krull UJ.
    Anal Chim Acta; 2006 May 24; 568(1-2):181-9. PubMed ID: 17761259
    [Abstract] [Full Text] [Related]

  • 17. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M, Arai Y, Iwane AH, Ishii Y, Yanagida T.
    Biosystems; 2007 Apr 24; 88(3):243-50. PubMed ID: 17276585
    [Abstract] [Full Text] [Related]

  • 18. Molecular recognition with DNA nanoswitches: effects of single base mutations on structure.
    Mountford CP, Buck AH, Campbell CJ, Dickinson P, Ferapontova EE, Terry JG, Beattie JS, Walton AJ, Ghazal P, Mount AR, Crain J.
    J Phys Chem B; 2008 Feb 28; 112(8):2439-44. PubMed ID: 18247590
    [Abstract] [Full Text] [Related]

  • 19. Basic principles of fluorescence and energy transfer.
    Morrison LE.
    Methods Mol Biol; 2008 Feb 28; 429():3-19. PubMed ID: 18695955
    [Abstract] [Full Text] [Related]

  • 20. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology.
    Kukolka F, Müller BK, Paternoster S, Arndt A, Niemeyer CM, Bräuchle C, Lamb DC.
    Small; 2006 Aug 28; 2(8-9):1083-9. PubMed ID: 17193172
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.