These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 16012616

  • 1. Simultaneously detected biomagnetic signals and NMR.
    Espy MA, Volegov PL, Matlachov AN, George JS, Kraus RH.
    Neurol Clin Neurophysiol; 2004 Nov 30; 2004():12. PubMed ID: 16012616
    [Abstract] [Full Text] [Related]

  • 2. Ultra-low field NMR measurements of liquids and gases with short relaxation times.
    Volegov PL, Matlachov AN, Kraus RH.
    J Magn Reson; 2006 Nov 30; 183(1):134-41. PubMed ID: 16945561
    [Abstract] [Full Text] [Related]

  • 3. Liquid-state NMR and scalar couplings in microtesla magnetic fields.
    McDermott R, Trabesinger AH, Muck M, Hahn EL, Pines A, Clarke J.
    Science; 2002 Mar 22; 295(5563):2247-9. PubMed ID: 11910105
    [Abstract] [Full Text] [Related]

  • 4. J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields.
    Bernarding J, Buntkowsky G, Macholl S, Hartwig S, Burghoff M, Trahms L.
    J Am Chem Soc; 2006 Jan 25; 128(3):714-5. PubMed ID: 16417349
    [Abstract] [Full Text] [Related]

  • 5. Measurement of thermal diffusivity by magnetic resonance imaging.
    Gultekin DH, Gore JC.
    Magn Reson Imaging; 2006 Nov 25; 24(9):1203-7. PubMed ID: 17071342
    [Abstract] [Full Text] [Related]

  • 6. Imaged deconvolution: a method for extracting high-resolution NMR spectra from inhomogeneous fields.
    Halse ME, Callaghan PT.
    J Magn Reson; 2007 Mar 25; 185(1):130-7. PubMed ID: 17196412
    [Abstract] [Full Text] [Related]

  • 7. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.
    Volegov P, Matlachov AN, Espy MA, George JS, Kraus RH.
    Magn Reson Med; 2004 Sep 25; 52(3):467-70. PubMed ID: 15334563
    [Abstract] [Full Text] [Related]

  • 8. SQUID detected NMR in microtesla magnetic fields.
    Matlachov AN, Volegov PL, Espy MA, George JS, Kraus RH.
    J Magn Reson; 2004 Sep 25; 170(1):1-7. PubMed ID: 15324752
    [Abstract] [Full Text] [Related]

  • 9. Toward direct neural current imaging by resonant mechanisms at ultra-low field.
    Kraus RH, Volegov P, Matlachov A, Espy M.
    Neuroimage; 2008 Jan 01; 39(1):310-7. PubMed ID: 17920296
    [Abstract] [Full Text] [Related]

  • 10. A 700 MHz 1H-NMR study reveals apoptosis-like behavior in human K562 erythroleukemic cells exposed to a 50 Hz sinusoidal magnetic field.
    Santini MT, Ferrante A, Romano R, Rainaldi G, Motta A, Donelli G, Vecchia P, Indovina PL.
    Int J Radiat Biol; 2005 Feb 01; 81(2):97-113. PubMed ID: 16019920
    [Abstract] [Full Text] [Related]

  • 11. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.
    Seliger J, Zagar V.
    J Magn Reson; 2009 Aug 01; 199(2):199-207. PubMed ID: 19464934
    [Abstract] [Full Text] [Related]

  • 12. MCG measurement in the environment of active magnetic shield.
    Yamazaki K, Kato K, Kobayashi K, Igarashi A, Sato T, Haga A, Kasai N.
    Neurol Clin Neurophysiol; 2004 Nov 30; 2004():40. PubMed ID: 16012640
    [Abstract] [Full Text] [Related]

  • 13. Are brain currents detectable by means of low-field NMR? A phantom study.
    Höfner N, Albrecht HH, Cassará AM, Curio G, Hartwig S, Haueisen J, Hilschenz I, Körber R, Martens S, Scheer HJ, Voigt J, Trahms L, Burghoff M.
    Magn Reson Imaging; 2011 Dec 30; 29(10):1365-73. PubMed ID: 21907519
    [Abstract] [Full Text] [Related]

  • 14. Magnetic field homogeneity: a new approach to orthogonalizing and optimizing shim gradients.
    Michal CA.
    J Magn Reson; 2007 Mar 30; 185(1):110-7. PubMed ID: 17188918
    [Abstract] [Full Text] [Related]

  • 15. Application of the forward linear prediction on high-resolution NMR spectra in inhomogeneous fields.
    Feng H, Cai S, Chen Z, Lin M, Feng J.
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec 01; 71(3):1027-31. PubMed ID: 18417415
    [Abstract] [Full Text] [Related]

  • 16. A method for improved quantification of 1H NMR signals under low-resolution conditions for solids.
    Avadhut YS, Schneider D, Schmedt Auf der Günne J.
    J Magn Reson; 2009 Nov 01; 201(1):1-6. PubMed ID: 19664946
    [Abstract] [Full Text] [Related]

  • 17. Magnetic noise rejection in the MCG using independent component analysis.
    Kobayashi K, Yamazaki K, Uchikawa Y, Simizu T, Nakai K, Kawazoe K, Izumoto H, Yoshizawa M.
    Neurol Clin Neurophysiol; 2004 Nov 30; 2004():105. PubMed ID: 16012646
    [Abstract] [Full Text] [Related]

  • 18. High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning.
    Sakellariou D, Le Goff G, Jacquinot JF.
    Nature; 2007 Jun 07; 447(7145):694-7. PubMed ID: 17554303
    [Abstract] [Full Text] [Related]

  • 19. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.
    Cullinan DB, Hondrogiannis G, Henderson TJ.
    Anal Chem; 2008 Apr 15; 80(8):3000-6. PubMed ID: 18345646
    [Abstract] [Full Text] [Related]

  • 20. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.
    Bidinosti CP, Kravchuk IS, Hayden ME.
    J Magn Reson; 2005 Nov 15; 177(1):31-43. PubMed ID: 16099186
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.