These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 16012949
1. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Spirlì C, Fiorotto R, Song L, Santos-Sacchi J, Okolicsanyi L, Masier S, Rocchi L, Vairetti MP, De Bernard M, Melero S, Pozzan T, Strazzabosco M. Gastroenterology; 2005 Jul; 129(1):220-33. PubMed ID: 16012949 [Abstract] [Full Text] [Related]
2. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Fiorotto R, Spirlì C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M. Gastroenterology; 2007 Nov; 133(5):1603-13. PubMed ID: 17983806 [Abstract] [Full Text] [Related]
3. P-glycoprotein inhibition by glibenclamide and related compounds. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. Pflugers Arch; 1999 Apr; 437(5):652-60. PubMed ID: 10087141 [Abstract] [Full Text] [Related]
4. Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Zsembery A, Jessner W, Sitter G, Spirlí C, Strazzabosco M, Graf J. Hepatology; 2002 Jan; 35(1):95-104. PubMed ID: 11786964 [Abstract] [Full Text] [Related]
5. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line. Sheppard DN, Robinson KA. J Physiol; 1997 Sep 01; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276 [Abstract] [Full Text] [Related]
6. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conductance regulator effect on potassium conductance. Cho WK, Siegrist VJ, Zinzow W. J Biol Chem; 2004 Apr 09; 279(15):14610-8. PubMed ID: 14722124 [Abstract] [Full Text] [Related]
7. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. Sheppard DN, Welsh MJ. J Gen Physiol; 1992 Oct 09; 100(4):573-91. PubMed ID: 1281220 [Abstract] [Full Text] [Related]
8. Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca(2+)-activated Cl- channels in mammalian cardiac myocytes. Yamazaki J, Hume JR. Circ Res; 1997 Jul 09; 81(1):101-9. PubMed ID: 9201033 [Abstract] [Full Text] [Related]
10. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression. Konstas AA, Bielfeld-Ackermann A, Korbmacher C. Pflugers Arch; 2001 Aug 09; 442(5):752-61. PubMed ID: 11512032 [Abstract] [Full Text] [Related]
11. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells. Julien M, Verrier B, Cerutti M, Chappe V, Gola M, Devauchelle G, Becq F. J Membr Biol; 1999 Apr 01; 168(3):229-39. PubMed ID: 10191357 [Abstract] [Full Text] [Related]
12. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S. J Physiol; 1998 Apr 01; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811 [Abstract] [Full Text] [Related]
13. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME. Proc Natl Acad Sci U S A; 1996 Jul 23; 93(15):8083-8. PubMed ID: 8755607 [Abstract] [Full Text] [Related]
14. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Poulsen JH, Fischer H, Illek B, Machen TE. Proc Natl Acad Sci U S A; 1994 Jun 07; 91(12):5340-4. PubMed ID: 7515498 [Abstract] [Full Text] [Related]
15. A novel enhancer of insulinotrophic action by high glucose (JTT-608) stimulates insulin secretion from pancreatic beta-cells via a new cellular mechanism. Itabashi N, Okada K, Muto S, Fujita N, Ohta T, Miyazaki Ji, Asano Y, Saito T. J Pharmacol Exp Ther; 2001 Jun 07; 297(3):953-60. PubMed ID: 11356916 [Abstract] [Full Text] [Related]
16. Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids. Roos FJM, Bijvelds MJC, Verstegen MMA, Roest HP, Metselaar HJ, Polak WG, Jonge HR, IJzermans JNM, van der Laan LJW. Am J Physiol Gastrointest Liver Physiol; 2021 May 01; 320(5):G741-G752. PubMed ID: 33655768 [Abstract] [Full Text] [Related]
17. CFTR regulation of intracellular calcium in normal and cystic fibrosis human airway epithelia. Walsh DE, Harvey BJ, Urbach V. J Membr Biol; 2000 Oct 01; 177(3):209-19. PubMed ID: 11014859 [Abstract] [Full Text] [Related]
18. Regulation of membrane chloride currents in rat bile duct epithelial cells. Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA. J Clin Invest; 1993 Jan 01; 91(1):319-28. PubMed ID: 7678606 [Abstract] [Full Text] [Related]
19. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Gupta J, Linsdell P. Pflugers Arch; 2002 Mar 01; 443(5-6):739-47. PubMed ID: 11889571 [Abstract] [Full Text] [Related]
20. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells. Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS. Biochem Biophys Res Commun; 1999 Aug 11; 261(3):682-8. PubMed ID: 10441486 [Abstract] [Full Text] [Related] Page: [Next] [New Search]