These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 16018483

  • 1. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D, Keefe DH.
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [Abstract] [Full Text] [Related]

  • 2. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC, Keefe DH.
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS, Keefe DH.
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [Abstract] [Full Text] [Related]

  • 4. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears.
    Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP.
    J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864
    [Abstract] [Full Text] [Related]

  • 5. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D, Keefe DH.
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [Abstract] [Full Text] [Related]

  • 6. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP, Neely ST, Dierking DM, Dorn PA, Hoover BM, Fitzpatrick DF.
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [Abstract] [Full Text] [Related]

  • 7. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST, Gorga MP, Dorn PA.
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [Abstract] [Full Text] [Related]

  • 8. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB, Dhar S.
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [Abstract] [Full Text] [Related]

  • 9. [Distortion product otoacoustic emissions for the assessment of auditory sensitivity].
    Chida E.
    Nihon Jibiinkoka Gakkai Kaiho; 1998 Nov; 101(11):1335-47. PubMed ID: 9867000
    [Abstract] [Full Text] [Related]

  • 10. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S.
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [Abstract] [Full Text] [Related]

  • 11. Otoacoustic emissions and extended high-frequency hearing sensitivity in young adults.
    Schmuziger N, Probst R, Smurzynski J.
    Int J Audiol; 2005 Jan; 44(1):24-30. PubMed ID: 15796099
    [Abstract] [Full Text] [Related]

  • 12. [Relationship between distortion product otoacoustic emissions and frequency discrimination in normal-hearing and hearing-impaired ears].
    Tanaka Y.
    Nihon Jibiinkoka Gakkai Kaiho; 1996 Jan; 99(1):65-78. PubMed ID: 8822256
    [Abstract] [Full Text] [Related]

  • 13. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM, Feeney MP, Gates GA.
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [Abstract] [Full Text] [Related]

  • 14. [Relationship between distortion product otoacoustic emissions and pure tone thresholds in normal and hearing-impaired ears].
    Chida E, Satoh N, Kawanami M, Kashiwamura M, Sakamoto T, Fukuda S, Inuyama Y.
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Apr; 100(4):436-43. PubMed ID: 9146016
    [Abstract] [Full Text] [Related]

  • 15. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW, Kochanek K, Skarzynski H.
    PLoS One; 2018 Apr; 13(2):e0192930. PubMed ID: 29451905
    [Abstract] [Full Text] [Related]

  • 16. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C, Ortmann AJ, Shera CA.
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [Abstract] [Full Text] [Related]

  • 17. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE, Long KM, Lees SE.
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [Abstract] [Full Text] [Related]

  • 18. Age-related changes in transiently evoked otoacoustic emissions and distortion product otoacoustic emissions in normal-hearing ears.
    Satoh Y, Kanzaki J, O-Uchi T, Yoshihara S.
    Auris Nasus Larynx; 1998 May; 25(2):121-30. PubMed ID: 9673723
    [Abstract] [Full Text] [Related]

  • 19. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears.
    Boege P, Janssen T.
    J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865
    [Abstract] [Full Text] [Related]

  • 20. One source for distortion product otoacoustic emissions generated by low- and high-level primaries.
    Lukashkin AN, Lukashkina VA, Russell IJ.
    J Acoust Soc Am; 2002 Jun; 111(6):2740-8. PubMed ID: 12083209
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.