These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 16018905
1. Copper and cadmium complexation by high molecular weight materials of dominant microalgae and of water from a eutrophic reservoir. Gouvêa SP, Vieira AA, Lombardi AT. Chemosphere; 2005 Sep; 60(9):1332-9. PubMed ID: 16018905 [Abstract] [Full Text] [Related]
5. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Matsuo AY, Wood CM, Val AL. Aquat Toxicol; 2005 Sep 30; 74(4):351-64. PubMed ID: 16051381 [Abstract] [Full Text] [Related]
6. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF. Aquat Toxicol; 2008 Aug 29; 89(2):82-93. PubMed ID: 18639348 [Abstract] [Full Text] [Related]
7. Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Miao AJ, Wang WX. Aquat Toxicol; 2006 Jun 15; 78(2):114-26. PubMed ID: 16616380 [Abstract] [Full Text] [Related]
8. Heavy metal (Zn and Cu) complexation and molecular size distribution in wastewater treatment plant effluent. Chaminda GG, Nakajima F, Furumai H. Water Sci Technol; 2008 Jun 15; 58(6):1207-13. PubMed ID: 18845858 [Abstract] [Full Text] [Related]
9. Significance of physicochemical forms of storage in microalgae in predicting copper transfer to filter-feeding oysters (Crassostrea gigas). Amiard-Triquet C, Berthet B, Joux L, Perrein-Ettajani H. Environ Toxicol; 2006 Feb 15; 21(1):1-7. PubMed ID: 16463257 [Abstract] [Full Text] [Related]
10. Copper and cadmium complexation by Cylindrospermopsis raciborskii exudates. Tonietto AE, Oliveira NL, Lombardi AT, Polpo A. Water Sci Technol; 2016 Feb 15; 73(10):2544-51. PubMed ID: 27191577 [Abstract] [Full Text] [Related]
11. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Soldo D, Hari R, Sigg L, Behra R. Aquat Toxicol; 2005 Mar 04; 71(4):307-17. PubMed ID: 15710479 [Abstract] [Full Text] [Related]
12. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. Rangel-Mendez JR, Monroy-Zepeda R, Leyva-Ramos E, Diaz-Flores PE, Shirai K. J Hazard Mater; 2009 Feb 15; 162(1):503-11. PubMed ID: 18585858 [Abstract] [Full Text] [Related]
13. Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbons. Sun FH, Zhou QX. Environ Pollut; 2007 Sep 15; 149(1):92-8. PubMed ID: 17331629 [Abstract] [Full Text] [Related]
14. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Peers G, Price NM. Nature; 2006 May 18; 441(7091):341-4. PubMed ID: 16572122 [Abstract] [Full Text] [Related]
15. The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Loutseti S, Danielidis DB, Economou-Amilli A, Katsaros Ch, Santas R, Santas P. Bioresour Technol; 2009 Apr 18; 100(7):2099-105. PubMed ID: 19109013 [Abstract] [Full Text] [Related]
16. Biochemistry: a cadmium enzyme from a marine diatom. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM. Nature; 2005 May 05; 435(7038):42. PubMed ID: 15875011 [Abstract] [Full Text] [Related]
17. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Johnson HL, Stauber JL, Adams MS, Jolley DF. Environ Toxicol; 2007 Jun 05; 22(3):234-44. PubMed ID: 17497632 [Abstract] [Full Text] [Related]
18. Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead: relationship to some lifestyle factors. Razagui IB, Ghribi I. Biol Trace Elem Res; 2005 Jul 05; 106(1):1-28. PubMed ID: 16037607 [Abstract] [Full Text] [Related]
19. Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. Lim MH, Wong BA, Pitcock WH, Mokshagundam D, Baik MH, Lippard SJ. J Am Chem Soc; 2006 Nov 08; 128(44):14364-73. PubMed ID: 17076510 [Abstract] [Full Text] [Related]
20. Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus. Serafim A, Bebianno MJ. Environ Res; 2009 May 08; 109(4):390-9. PubMed ID: 19345346 [Abstract] [Full Text] [Related] Page: [Next] [New Search]