These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Han H, Monroe N, Votteler J, Shakya B, Sundquist WI, Hill CP. J Biol Chem; 2015 May 22; 290(21):13490-9. PubMed ID: 25833946 [Abstract] [Full Text] [Related]
7. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain. Iwaya N, Takasu H, Goda N, Shirakawa M, Tanaka T, Hamada D, Hiroaki H. J Biochem; 2013 May 22; 153(5):473-81. PubMed ID: 23423459 [Abstract] [Full Text] [Related]
8. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. Guo EZ, Xu Z. J Biol Chem; 2015 Mar 27; 290(13):8396-408. PubMed ID: 25657007 [Abstract] [Full Text] [Related]
9. Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B. Fujita H, Umezuki Y, Imamura K, Ishikawa D, Uchimura S, Nara A, Yoshimori T, Hayashizaki Y, Kawai J, Ishidoh K, Tanaka Y, Himeno M. J Cell Sci; 2004 Jun 15; 117(Pt 14):2997-3009. PubMed ID: 15173323 [Abstract] [Full Text] [Related]
11. The beta domain is required for Vps4p oligomerization into a functionally active ATPase. Vajjhala PR, Wong JS, To HY, Munn AL. FEBS J; 2006 Jun 11; 273(11):2357-73. PubMed ID: 16704411 [Abstract] [Full Text] [Related]
12. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Azmi IF, Davies BA, Xiao J, Babst M, Xu Z, Katzmann DJ. Dev Cell; 2008 Jan 11; 14(1):50-61. PubMed ID: 18194652 [Abstract] [Full Text] [Related]
14. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. Monroe N, Hill CP. J Mol Biol; 2016 May 08; 428(9 Pt B):1897-911. PubMed ID: 26555750 [Abstract] [Full Text] [Related]
15. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast. Kojima R, Obita T, Onoue K, Mizuguchi M. J Mol Biol; 2016 Jun 05; 428(11):2392-2404. PubMed ID: 27075672 [Abstract] [Full Text] [Related]
16. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O, Emr SD, Williams RL. Nature; 2007 Oct 11; 449(7163):735-9. PubMed ID: 17928861 [Abstract] [Full Text] [Related]
17. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Shim S, Kimpler LA, Hanson PI. Traffic; 2007 Aug 11; 8(8):1068-79. PubMed ID: 17547705 [Abstract] [Full Text] [Related]
18. The Sulfolobus solfataricus AAA protein Sso0909, a homologue of the eukaryotic ESCRT Vps4 ATPase. Hobel CF, Albers SV, Driessen AJ, Lupas AN. Biochem Soc Trans; 2008 Feb 11; 36(Pt 1):94-8. PubMed ID: 18208393 [Abstract] [Full Text] [Related]
19. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5. Vild CJ, Li Y, Guo EZ, Liu Y, Xu Z. J Biol Chem; 2015 Mar 13; 290(11):7291-303. PubMed ID: 25637630 [Abstract] [Full Text] [Related]
20. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Yang D, Rismanchi N, Renvoisé B, Lippincott-Schwartz J, Blackstone C, Hurley JH. Nat Struct Mol Biol; 2008 Dec 13; 15(12):1278-86. PubMed ID: 18997780 [Abstract] [Full Text] [Related] Page: [Next] [New Search]