These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 16022633
1. Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Van Wesenbeeck L, Van Hul W. Crit Rev Eukaryot Gene Expr; 2005; 15(2):133-62. PubMed ID: 16022633 [Abstract] [Full Text] [Related]
4. Recent developments in the understanding of the pathophysiology of osteopetrosis. Felix R, Hofstetter W, Cecchini MG. Eur J Endocrinol; 1996 Feb; 134(2):143-56. PubMed ID: 8630510 [Abstract] [Full Text] [Related]
5. Are nonresorbing osteoclasts sources of bone anabolic activity? Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. J Bone Miner Res; 2007 Apr; 22(4):487-94. PubMed ID: 17227224 [Abstract] [Full Text] [Related]
6. Osteoblasts from the toothless (osteopetrotic) mutation in the rat are unable to direct bone resorption by normal osteoclasts in response to 1,25-dihydroxyvitamin D. Sundquist KT, Jackson ME, Hermey DC, Marks SC. Tissue Cell; 1995 Oct; 27(5):569-74. PubMed ID: 7491626 [Abstract] [Full Text] [Related]
8. Human osteopetrosis and other sclerosing disorders: recent genetic developments. de Vernejoul MC, Bénichou O. Calcif Tissue Int; 2001 Jul; 69(1):1-6. PubMed ID: 11685426 [Abstract] [Full Text] [Related]
9. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion. Supanchart C, Wartosch L, Schlack C, Kühnisch J, Felsenberg D, Fuhrmann JC, de Vernejoul MC, Jentsch TJ, Kornak U. Bone; 2014 Jan; 58():92-102. PubMed ID: 24103576 [Abstract] [Full Text] [Related]
10. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Thudium CS, Moscatelli I, Flores C, Thomsen JS, Brüel A, Gudmann NS, Hauge EM, Karsdal MA, Richter J, Henriksen K. Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599 [Abstract] [Full Text] [Related]
13. Coexistence of reduced function of natural killer cells and osteoclasts in two distinct osteopetrotic mutations in the rat. Popoff SN, Jackson ME, Koevary SB, Marks SC. J Bone Miner Res; 1991 Mar; 6(3):263-71. PubMed ID: 2035353 [Abstract] [Full Text] [Related]
14. The heterogeneity of the osteopetroses reflects the diversity of cellular influences during skeletal development. Popoff SN, Marks SC. Bone; 1995 Nov; 17(5):437-45. PubMed ID: 8579954 [Abstract] [Full Text] [Related]
15. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H. J Exp Med; 1999 Jul 19; 190(2):293-8. PubMed ID: 10432291 [Abstract] [Full Text] [Related]
16. Osteoclast biology in the osteopetrotic (op) rat. Marks SC, Popoff SN. Am J Anat; 1989 Dec 19; 186(4):325-34. PubMed ID: 2589217 [Abstract] [Full Text] [Related]
18. Reduced bone resorption in toothless (osteopetrotic) rats--an abnormality of osteoblasts related to their inability to activate osteoclast activity in vitro. Hermey DC, Popoff SN, Marks SC. Connect Tissue Res; 1996 Dec 19; 35(1-4):273-8. PubMed ID: 9084666 [Abstract] [Full Text] [Related]
19. Evidence that the rat osteopetrotic mutation toothless (tl) is not in the TNFSF11 (TRANCE, RANKL, ODF, OPGL) gene. Odgren PR, Kim N, van Wesenbeeck L, MacKay C, Mason-Savas A, Safadi FF, Popoff SN, Lengner C, van-Hul W, Choi Y, Marks SC. Int J Dev Biol; 2001 Dec 19; 45(8):853-9. PubMed ID: 11804028 [Abstract] [Full Text] [Related]
20. Animal models of osteopetrosis: the impact of recent molecular developments on novel strategies for therapeutic intervention. Popoff SN, Schneider GB. Mol Med Today; 1996 Aug 19; 2(8):349-58. PubMed ID: 8796921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]