These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 16023202
1. Bioreactors for tissue mass culture: design, characterization, and recent advances. Martin Y, Vermette P. Biomaterials; 2005 Dec; 26(35):7481-503. PubMed ID: 16023202 [Abstract] [Full Text] [Related]
2. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Rajagopalan S, Robb RA. Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007 [Abstract] [Full Text] [Related]
3. Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells. Pathi P, Ma T, Locke BR. Biotechnol Bioeng; 2005 Mar 30; 89(7):743-58. PubMed ID: 15696509 [Abstract] [Full Text] [Related]
4. Model-based analysis and design of a microchannel reactor for tissue engineering. Mehta K, Linderman JJ. Biotechnol Bioeng; 2006 Jun 20; 94(3):596-609. PubMed ID: 16586504 [Abstract] [Full Text] [Related]
5. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Lappa M. Biotechnol Bioeng; 2003 Dec 05; 84(5):518-32. PubMed ID: 14574686 [Abstract] [Full Text] [Related]
6. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Bettahalli NM, Vicente J, Moroni L, Higuera GA, van Blitterswijk CA, Wessling M, Stamatialis DF. Acta Biomater; 2011 Sep 05; 7(9):3312-24. PubMed ID: 21704736 [Abstract] [Full Text] [Related]
7. The effect of continuous culture on the growth and structure of tissue-engineered cartilage. Khan AA, Suits JM, Kandel RA, Waldman SD. Biotechnol Prog; 2009 Sep 05; 25(2):508-15. PubMed ID: 19294749 [Abstract] [Full Text] [Related]
8. Bioactive composite materials for tissue engineering scaffolds. Boccaccini AR, Blaker JJ. Expert Rev Med Devices; 2005 May 05; 2(3):303-17. PubMed ID: 16288594 [Abstract] [Full Text] [Related]
9. Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver. Hongo T, Kajikawa M, Ishida S, Ozawa S, Ohno Y, Sawada J, Umezawa A, Ishikawa Y, Kobayashi T, Honda H. J Biosci Bioeng; 2005 Mar 05; 99(3):237-44. PubMed ID: 16233783 [Abstract] [Full Text] [Related]
10. Design and characterization of a rotating bed system bioreactor for tissue engineering applications. Anton F, Suck K, Diederichs S, Behr L, Hitzmann B, van Griensven M, Scheper T, Kasper C. Biotechnol Prog; 2008 Mar 05; 24(1):140-7. PubMed ID: 18198883 [Abstract] [Full Text] [Related]
11. Improvement of culture conditions of human embryoid bodies using a controlled perfused and dialyzed bioreactor system. Côme J, Nissan X, Aubry L, Tournois J, Girard M, Perrier AL, Peschanski M, Cailleret M. Tissue Eng Part C Methods; 2008 Dec 05; 14(4):289-98. PubMed ID: 18710335 [Abstract] [Full Text] [Related]
12. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters. Bueno EM, Laevsky G, Barabino GA. J Biotechnol; 2007 May 01; 129(3):516-31. PubMed ID: 17324484 [Abstract] [Full Text] [Related]
13. The potential for the use of nanofeaturing in medical devices. Curtis A. Expert Rev Med Devices; 2005 May 01; 2(3):293-301. PubMed ID: 16288593 [Abstract] [Full Text] [Related]
14. Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Chung CA, Yang CW, Chen CW. Biotechnol Bioeng; 2006 Aug 20; 94(6):1138-46. PubMed ID: 16586509 [Abstract] [Full Text] [Related]
15. Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Papagianni M, Mattey M, Kristiansen B. Biotechnol Prog; 2003 Aug 20; 19(5):1498-504. PubMed ID: 14524711 [Abstract] [Full Text] [Related]
16. Computational fluid dynamics for improved bioreactor design and 3D culture. Hutmacher DW, Singh H. Trends Biotechnol; 2008 Apr 20; 26(4):166-72. PubMed ID: 18261813 [Abstract] [Full Text] [Related]
17. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Andersson H, van den Berg A. Lab Chip; 2004 Apr 20; 4(2):98-103. PubMed ID: 15052347 [Abstract] [Full Text] [Related]
18. Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Wu MH, Urban JP, Cui Z, Cui ZF. Biomed Microdevices; 2006 Dec 20; 8(4):331-40. PubMed ID: 16917663 [Abstract] [Full Text] [Related]
19. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Trends Biotechnol; 2009 May 20; 27(5):307-14. PubMed ID: 19329205 [Abstract] [Full Text] [Related]
20. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage. Kino-Oka M, Maeda Y, Yamamoto T, Sugawara K, Taya M. J Biosci Bioeng; 2005 Mar 20; 99(3):197-207. PubMed ID: 16233778 [Abstract] [Full Text] [Related] Page: [Next] [New Search]