These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
408 related items for PubMed ID: 16029949
1. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Sasaki K, Neptune RR. Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949 [Abstract] [Full Text] [Related]
2. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Neptune RR, Sasaki K. J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878 [Abstract] [Full Text] [Related]
3. Differences in muscle function during walking and running at the same speed. Sasaki K, Neptune RR. J Biomech; 2006 Mar; 39(11):2005-13. PubMed ID: 16129444 [Abstract] [Full Text] [Related]
4. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267 [Abstract] [Full Text] [Related]
5. Preferred and energetically optimal gait transition speeds in human locomotion. Hreljac A. Med Sci Sports Exerc; 1993 Oct 01; 25(10):1158-62. PubMed ID: 8231761 [Abstract] [Full Text] [Related]
6. The relationship between gait transition speed and the aerobic thresholds for walking and running. Sentija D, Markovic G. Int J Sports Med; 2009 Nov 01; 30(11):795-801. PubMed ID: 19838979 [Abstract] [Full Text] [Related]
7. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F, Minetti AE. Eur J Appl Physiol; 2003 Jan 01; 88(4-5):297-316. PubMed ID: 12527959 [Abstract] [Full Text] [Related]
8. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS, Ferris DP. J Exp Biol; 2009 Jan 01; 212(Pt 1):21-31. PubMed ID: 19088207 [Abstract] [Full Text] [Related]
9. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A, Aerts P, Otten B, De Deyn PP, De Clercq D. J Exp Biol; 2004 Jun 01; 207(Pt 14):2417-31. PubMed ID: 15184514 [Abstract] [Full Text] [Related]
10. Dynamics of the body centre of mass during actual acceleration across transition speed. Segers V, Aerts P, Lenoir M, De Clercq D. J Exp Biol; 2007 Feb 01; 210(Pt 4):578-85. PubMed ID: 17267643 [Abstract] [Full Text] [Related]
11. A model of bipedal locomotion on compliant legs. Alexander RM. Philos Trans R Soc Lond B Biol Sci; 1992 Oct 29; 338(1284):189-98. PubMed ID: 1360684 [Abstract] [Full Text] [Related]
12. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait. Caldwell GE, Forrester LW. Med Sci Sports Exerc; 1992 Dec 29; 24(12):1396-412. PubMed ID: 1470024 [Abstract] [Full Text] [Related]
13. Mechanical power and efficiency of level walking with different stride rates. Umberger BR, Martin PE. J Exp Biol; 2007 Sep 29; 210(Pt 18):3255-65. PubMed ID: 17766303 [Abstract] [Full Text] [Related]
14. Fuel oxidation at the walk-to-run-transition in humans. Ganley KJ, Stock A, Herman RM, Santello M, Willis WT. Metabolism; 2011 May 29; 60(5):609-16. PubMed ID: 20708204 [Abstract] [Full Text] [Related]
15. The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris). Rubenson J, Henry HT, Dimoulas PM, Marsh RL. J Exp Biol; 2006 Jul 29; 209(Pt 13):2395-408. PubMed ID: 16788023 [Abstract] [Full Text] [Related]
16. Changing the demand on specific muscle groups affects the walk-run transition speed. Bartlett JL, Kram R. J Exp Biol; 2008 Apr 29; 211(Pt 8):1281-8. PubMed ID: 18375853 [Abstract] [Full Text] [Related]
17. Comparison between preferred and energetically optimal transition speeds in adolescents. Tseh W, Bennett J, Caputo JL, Morgan DW. Eur J Appl Physiol; 2002 Nov 29; 88(1-2):117-21. PubMed ID: 12436278 [Abstract] [Full Text] [Related]
18. Muscle mechanical advantage of human walking and running: implications for energy cost. Biewener AA, Farley CT, Roberts TJ, Temaner M. J Appl Physiol (1985); 2004 Dec 29; 97(6):2266-74. PubMed ID: 15258124 [Abstract] [Full Text] [Related]
20. Motor patterns in human walking and running. Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. J Neurophysiol; 2006 Jun 29; 95(6):3426-37. PubMed ID: 16554517 [Abstract] [Full Text] [Related] Page: [Next] [New Search]