These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 16032864
41. Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers. Scheuble N, Lussi M, Geue T, Carrière F, Fischer P. Biomacromolecules; 2016 Oct 10; 17(10):3328-3337. PubMed ID: 27635994 [Abstract] [Full Text] [Related]
42. Impact of globule unfolding on dilational viscoelasticity of beta-lactoglobulin adsorption layers. Noskov BA, Grigoriev DO, Latnikova AV, Lin SY, Loglio G, Miller R. J Phys Chem B; 2009 Oct 08; 113(40):13398-404. PubMed ID: 19754088 [Abstract] [Full Text] [Related]
43. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro. Svitova TF, Lin MC. Adv Colloid Interface Sci; 2016 Jul 08; 233():4-24. PubMed ID: 26830077 [Abstract] [Full Text] [Related]
44. Compression/expansion rheology of oil/water interfaces with adsorbed proteins. Comparison with the air/water surface. Benjamins J, Lyklema J, Lucassen-Reynders EH. Langmuir; 2006 Jul 04; 22(14):6181-8. PubMed ID: 16800674 [Abstract] [Full Text] [Related]
45. Surface rheology of PEO-PPO-PEO triblock copolymers at the air-water interface: comparison of spread and adsorbed layers. Blomqvist BR, Wärnheim T, Claesson PM. Langmuir; 2005 Jul 05; 21(14):6373-84. PubMed ID: 15982044 [Abstract] [Full Text] [Related]
46. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology. Mikhailovskaya AA, Noskov BA, Lin SY, Loglio G, Miller R. J Phys Chem B; 2011 Aug 25; 115(33):9971-9. PubMed ID: 21780823 [Abstract] [Full Text] [Related]
47. Modification of beta-lactoglobulin by oligofructose: impact on protein adsorption at the air-water interface. Trofimova D, de Jongh HH. Langmuir; 2004 Jun 22; 20(13):5544-52. PubMed ID: 15986698 [Abstract] [Full Text] [Related]
48. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation. Ganzevles RA, Kosters H, Vliet Tv, Stuart MA, de Jongh HH. J Phys Chem B; 2007 Nov 15; 111(45):12969-76. PubMed ID: 17949032 [Abstract] [Full Text] [Related]
49. Rheology of mixed beta-casein/beta-lactoglobulin films at the air-water interface. Ridout MJ, Mackie AR, Wilde PJ. J Agric Food Chem; 2004 Jun 16; 52(12):3930-7. PubMed ID: 15186119 [Abstract] [Full Text] [Related]
50. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry. Gülseren I, Corredig M. Colloids Surf B Biointerfaces; 2013 Nov 01; 111():672-9. PubMed ID: 23907056 [Abstract] [Full Text] [Related]
51. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging. Stanimirova RD, Gurkov TD, Kralchevsky PA, Balashev KT, Stoyanov SD, Pelan EG. Langmuir; 2013 May 21; 29(20):6053-67. PubMed ID: 23611592 [Abstract] [Full Text] [Related]
52. Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates. Hu J, Yang J, Xu Y, Zhang K, Nishinari K, Phillips GO, Fang Y. Food Funct; 2019 Sep 01; 10(9):5922-5930. PubMed ID: 31469143 [Abstract] [Full Text] [Related]
53. Specific effects of Ca(2+) ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability. Braunschweig B, Schulze-Zachau F, Nagel E, Engelhardt K, Stoyanov S, Gochev G, Khristov K, Mileva E, Exerowa D, Miller R, Peukert W. Soft Matter; 2016 Jul 06; 12(27):5995-6004. PubMed ID: 27337699 [Abstract] [Full Text] [Related]
54. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Danov KD, Kralchevsky PA, Radulova GM, Basheva ES, Stoyanov SD, Pelan EG. Adv Colloid Interface Sci; 2015 Aug 06; 222():148-61. PubMed ID: 24828304 [Abstract] [Full Text] [Related]
55. Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties. Yang X, Berry TK, Foegeding EA. J Food Sci; 2009 Jun 06; 74(5):E259-68. PubMed ID: 19646041 [Abstract] [Full Text] [Related]
56. Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions. Tsibranska S, Tcholakova S, Golemanov K, Denkov N, Pelan E, Stoyanov SD. J Colloid Interface Sci; 2020 Mar 22; 564():264-275. PubMed ID: 31923825 [Abstract] [Full Text] [Related]
57. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces. Rühs PA, Scheuble N, Windhab EJ, Mezzenga R, Fischer P. Langmuir; 2012 Aug 28; 28(34):12536-43. PubMed ID: 22857147 [Abstract] [Full Text] [Related]
58. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC, Øgendal LH, Skibsted LH. Langmuir; 2008 Mar 18; 24(6):2603-10. PubMed ID: 18288877 [Abstract] [Full Text] [Related]
60. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins. Mitropoulos V, Mütze A, Fischer P. Adv Colloid Interface Sci; 2014 Apr 18; 206():195-206. PubMed ID: 24332621 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]