These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


524 related items for PubMed ID: 16034577

  • 21. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex.
    Arai N, Okabe S, Furubayashi T, Terao Y, Yuasa K, Ugawa Y.
    Clin Neurophysiol; 2005 Mar; 116(3):605-13. PubMed ID: 15721074
    [Abstract] [Full Text] [Related]

  • 22. Short latency afferent inhibition and facilitation in patients with writer's cramp.
    Kessler KR, Ruge D, Ilić TV, Ziemann U.
    Mov Disord; 2005 Feb; 20(2):238-42. PubMed ID: 15368612
    [Abstract] [Full Text] [Related]

  • 23. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N, Murakami T, Funase K, Narita T, Kasai T.
    Neurosci Lett; 2008 Mar 12; 433(2):135-40. PubMed ID: 18261851
    [Abstract] [Full Text] [Related]

  • 24. Different short-term modulation of cortical motor output to distal and proximal upper-limb muscles during painful sensory nerve stimulation.
    Urban PP, Solinski M, Best C, Rolke R, Hopf HC, Dieterich M.
    Muscle Nerve; 2004 May 12; 29(5):663-9. PubMed ID: 15116369
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition.
    Kojima S, Onishi H, Miyaguchi S, Kotan S, Sugawara K, Kirimoto H, Tamaki H.
    Neuroreport; 2015 Aug 05; 26(11):634-7. PubMed ID: 26103117
    [Abstract] [Full Text] [Related]

  • 27. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ, Asmussen MJ, Nelson AJ.
    J Neurophysiol; 2016 Aug 01; 116(2):637-44. PubMed ID: 27226451
    [Abstract] [Full Text] [Related]

  • 28. Modulation of intracortical excitability in human hand motor areas. The effect of cutaneous stimulation and its topographical arrangement.
    Ridding MC, Pearce SL, Flavel SC.
    Exp Brain Res; 2005 Jun 01; 163(3):335-43. PubMed ID: 15654586
    [Abstract] [Full Text] [Related]

  • 29. Focal transcranial magnetic stimulation of motor cortex evokes bilateral and symmetrical silent periods in human masseter muscles.
    Jaberzadeh S, Sakuma S, Zoghi M, Miles TS, Nordstrom MA.
    Clin Neurophysiol; 2008 Mar 01; 119(3):693-703. PubMed ID: 18164243
    [Abstract] [Full Text] [Related]

  • 30. Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm.
    McCambridge AB, Bradnam LV, Stinear CM, Byblow WD.
    J Neurophysiol; 2011 Jun 01; 105(6):2937-42. PubMed ID: 21511707
    [Abstract] [Full Text] [Related]

  • 31. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition.
    Tsang P, Jacobs MF, Lee KGH, Asmussen MJ, Zapallow CM, Nelson AJ.
    Clin Neurophysiol; 2014 Nov 01; 125(11):2253-2259. PubMed ID: 24775920
    [Abstract] [Full Text] [Related]

  • 32. Long-latency afferent inhibition during selective finger movement.
    Voller B, St Clair Gibson A, Lomarev M, Kanchana S, Dambrosia J, Dang N, Hallett M.
    J Neurophysiol; 2005 Aug 01; 94(2):1115-9. PubMed ID: 15843479
    [Abstract] [Full Text] [Related]

  • 33. Transient inhibition of the human motor cortex by capsaicin-induced pain. A study with transcranial magnetic stimulation.
    Farina S, Valeriani M, Rosso T, Aglioti S, Tamburin S, Fiaschi A, Tinazzi M.
    Neurosci Lett; 2001 Nov 13; 314(1-2):97-101. PubMed ID: 11698155
    [Abstract] [Full Text] [Related]

  • 34. Effects of sensory afferent input on motor cortex excitability of agonist and antagonist muscles.
    Sugawara K, Takenaka Y, Suzuki T.
    Behav Brain Res; 2024 Apr 27; 464():114946. PubMed ID: 38452975
    [Abstract] [Full Text] [Related]

  • 35. Asymmetries of long-latency intracortical inhibition in motor cortex and handedness.
    Hammond GR, Garvey CA.
    Exp Brain Res; 2006 Jul 27; 172(4):449-53. PubMed ID: 16463150
    [Abstract] [Full Text] [Related]

  • 36. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G, Ginatempo F, Mercante B, Cattaneo L, Pavesi G, Rothwell JC, Deriu F.
    J Physiol; 2020 Feb 27; 598(4):839-851. PubMed ID: 31876950
    [Abstract] [Full Text] [Related]

  • 37. Hemispheric asymmetry of surround inhibition in the human motor system.
    Shin HW, Sohn YH, Hallett M.
    Clin Neurophysiol; 2009 Apr 27; 120(4):816-9. PubMed ID: 19299196
    [Abstract] [Full Text] [Related]

  • 38. Changes in short afferent inhibition during phasic movement in focal dystonia.
    Richardson SP, Bliem B, Lomarev M, Shamim E, Dang N, Hallett M.
    Muscle Nerve; 2008 Mar 27; 37(3):358-63. PubMed ID: 18061936
    [Abstract] [Full Text] [Related]

  • 39. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction.
    Hannah R, Rothwell JC.
    Brain Stimul; 2017 Mar 27; 10(1):106-115. PubMed ID: 28029595
    [Abstract] [Full Text] [Related]

  • 40. Conditioning intensity-dependent interaction between short-latency interhemispheric inhibition and short-latency afferent inhibition.
    Tsutsumi R, Shirota Y, Ohminami S, Terao Y, Ugawa Y, Hanajima R.
    J Neurophysiol; 2012 Aug 27; 108(4):1130-7. PubMed ID: 22623481
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.